Ответ. [22].
Графические методы решения задач с параметрами. Задачи с параметрами требуют к себе своеобразного подхода по сравнению с остальными – здесь необходимо грамотное и тщательное исследование. Для применения графических методов требуется умение выполнять построение различных графиков, вести графическое исследование, соответствующее данным значениям параметра.
1. При каких значениях параметра уравнение имеет ровно 2 решения?
Решение. Рассмотрим функцию
.Графиком такой функции является ломанная из трех звеньев. Найдем точки излома:
1)
;2)
.Так как
; , то и ‑ точки излома. Заметим, что , если и имеет минимум в одной из точек или .С геометрической точки зрения количество решений уравнения
‑ это количество точек пересечения при каждом фиксированном значении параметра ‑ ломанной, состоящей из трех звеньев, и прямой .По рис. 4 видно, что уравнение
имеет ровно 2 решения, если значение в точке минимума меньше 27. Причем значение в другой из точек излома несущественно. Значит необходимо выполнение одного из двух неравенств: или .Так как
, то первое неравенство равносильно неравенству . А поскольку , то второе неравенство равносильно неравенству .Объединением полученных интервалов будет интервал
.Ответ. Уравнение имеет два решения при
[7].2. При любом значении параметра решить неравенство
.Решение. Рассмотрим плоскость
и изобразим на ней множество точек, координаты которых удовлетворяют неравенству рис.5. Сначала изобразим область, для точек которой имеет смысл . Это будет полуплоскость (правее и ниже прямой ), из которой удалены части прямых . Вне полосы, ограниченной прямыми и , будет , и, следовательно, после потенцирования неравенства получим .Последнему неравенству соответствует область под параболой
(при этом ).Внутри полосы
будет . На рисунке 5 область , для точек которой , заштрихована. (Заметим, что парабола касается прямой ) Теперь ось точками разбита на шесть участков, на каждом из которых легко выписывается решение нашего неравенства. Для этого берем на соответствующем участке, проводим горизонтальную прямую, находим значения , соответствующие концам отрезков этой прямой, попавших в заштрихованную зону.Например, если
, то получаем два отрезка, концы первого: и (меньший корень уравнения ), второго: и .Ответ. Если
, , решений нет;если
, то ;если
, то и ;если
, то и ;если
, то и ;если
, то ;если
, то и [4].С целью практического обоснования выводов, полученных в ходе наблюдения за деятельностью учащихся 10 «А» и 10 «Б» классов был проведен частичный психолого-педагогический эксперимент в МОУ СОШ №3 г. Ставрополя.
Работа предусматривала несколько этапов. На первом этапе проводился констатирующий эксперимент, направленный на выяснение уровня сформированности методов научного познания у учащихся.
На следующем этапе была проведена серия экспериментальных занятий, направленных на формирование у учащихся основ методов научного познания.
Заключительный этап исследования проводился теми же методами, что и первый. Затем следовало подведение итогов опытно-экспериментальной работы. Рассмотрим подробнее каждый из этапов.
2.4.1 Констатирующий этап эксперимента
В опытно-экспериментальной работе участвовали два класса 10 «А» ‑ контрольный класс, 10 «Б» ‑ экспериментальный класс. В контрольном классе участвовало 18 человек и в контрольном такое же число, таким образом, участвовало 36 человек.