Смекни!
smekni.com

Методика изучения геометрических величин в курсе геометрии средней школы (стр. 1 из 6)

Министерство общего и профессионально образования

Южный Федеральный Университет

Ростовский педагогический институт

Кафедра геометрии и методики преподавания математики

Курсовая работа на тему:

Методика изучения геометрических величин в курсе геометрии средней школы

Выполнила

студентка 62 группы.

ф-та «Математика»

Бурова И.В.

2010 г


Оглавление

Введение

1 Теоретические основы изучения геометрических величин в средней школе

1.1 История возникновения и развития геометрических величин

1.2 О роли и месте величин, их измерений в процессе обучения

2 Методика изучения геометрических величин в курсе геометрии средней школы

2.1 Методика изучения длин в курсе геометрии средней школы

2.2 Методика изучения величин углов в курсе геометрии средней школы

2.3 Методика изучения площадей фигур в курсе геометрии средней школы

2.4 Методика изучения объемов фигур в курсе геометрии средней школы

Заключение

Список используемой литературы

Приложение 1 Аксиомы теории величин

Приложение 2 Тест для учащихся 8 класса по теме «Площади фигур»

Приложение 3 Самостоятельная работа для учащихся 7 класса на тему «Измерение отрезков»

Введение

На современном этапе развития общеобразовательной школы главные её задачи состоят в том, чтобы дать учащимся глубокие знания основных наук, совершенствовать их диалектико-материалистическое мировоззрение, развивать творческие способности и трудовые навыки, прививать желание и умение самостоятельно приобретать и углублять свои знания. Решение этих задач требует всемерной активности их учебной деятельности, осмысленного изучения материала.

Представления учащихся о взаимосвязи математики и окружающего мира достигается сочетанием теоретического и современных прикладных аспектов школьного курса математики. Этому способствует и тот факт, что в программе и учебных пособиях отражены внутрипредметные и межпредметные связи . На уроках математики, как правило, готовится весь аппарат, необходимый для изучения смежных предметов на достаточно высоком уровне. Большой интерес представляют те понятия, которые находят применение в нескольких школьных предметах. Одним из таких понятий является понятие величины.

Величина — одно из основных математических понятий. Изучение в курсе математики средней школы величин и их измерений имеет большое значение в плане развития школьников. Это обусловлено тем, что через понятие величины описываются реальные свойства предметов и явлений, происходит познание окружающей действительности; знакомство с зависимостями между величинами помогает создать у детей целостные представления об окружающем мире; изучение процесса измерения величин способствует приобретению практических умений и навыков необходимых человеку в его повседневной деятельности.

Объект исследования: процесс изучения геометрических величин в курсе геометрии средней школы.

Предмет исследования: методика изучения геометрических величин в курсе геометрии средней школы.

Цель курсовой работы заключается в описании методики изучения геометрических величин в курсе геометрии средней школы.

Задачи:

1. Рассмотреть историю развития геометрических величин.

2. Охарактеризовать понятие геометрической величины.

3. Установить роль и место величин, их измерений в процессе

обучения.

4. Описать методику изучения геометрических величин в курсе геометрии средней школы.

Данная курсовая работа состоит из введения, двух глав, заключения, списка используемой литературы и трех приложений.

В первой главе рассматриваются теоретические основы изучения геометрических величин в курсе геометрии средней школы, а именно, история возникновения и развития геометрических величин, роль и место величин, их измерений в процессе изучения. Во второй главе описывается методика изучения геометрических величин в курсе геометрии средней школы.

1 Теоретические основы изучения геометрических величин в средней школе

1.1 История возникновения и развития геометрических величин

Величина — одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений.

Задатки геометрических знаний, связанных с измерением площадей, теряются в глубине тысячелетий.

Еще 4—5 тыс. лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат издавна служил эталоном при измерении площадей благодаря многим своим замечательным свойствам: равные стороны, равные и прямые углы, симметричность и общее совершенство формы. Квадраты легко строить, ими можно заполнить плоскость без пробелов (в Древнем Китае мерой площади был прямоугольник).

Древние египтяне 4000 лет назад пользовались почти теми же приемами, что и мы, для измерения площади прямоугольника, треугольника и трапеции: основание треугольника делилось пополам и умножалось на высоту; для трапеции же сумма параллельных сторон делилась пополам и умножалась на высоту. Для вычисления площади S четырехугольника со сторонами а, b, с, d(рис. 1) применялась формула

т. е. умножались полусуммы противоположных сторон. Эта формула верна только для прямоугольника. С ее помощью можно вычислить приближенно площадь таких четырехугольников, у которых углы близки к прямым.

Для определения площади Sравнобедренного тpeyгольника АВС, в котором |АВ| = |АС| , египтяне пользовались приближенной формулой:

Совершаемая при этом ошибка тем меньше, чем меньше разность между стороной

и высотой
треугольника, иными словами, чем ближе вершина В С) к основанию Dвысоты из А. Вот почему приближенная формула применима лишь для треугольников с сравнительно малым углом при вершине.

Понятие угла на протяжении веков не оставалось без изменений, оно обобщалось и расширялось под влиянием запросов практики и науки. Градусная система измерения углов, в которой за единицу принят угол, равный

части угла, соответствующего полному обороту одной стороны угла около его вершины, восходит к III- IIтысячелетиям до н. э., к периоду возникновения шестидесятеричной системы счисления в вавилонской математике.

Шестидесятеричное градусное измерение, как и шестидесятеричные дроби, проникло далеко за пределы ассиро-вавилонского царства и получило широкое распространение в странах Азии, Северной Африки и Западной Европы. Они применялись, в частности, в астрономии и связанной с ней тригонометрии.

Гиппарх, Птолемей и другие древнегреческие астрономы употребляли таблицы, в которых давались величины хорд, соответствующих данным дугам. Хорды (как и дуги) измерялись градусами, минутами и секундами, при этом один градус составлял обычно шестидесятую часть радиуса. Индийцы заимствовали через греков вавилонское градусное измерение дуг, но вместо хорд они измеряли линии синусов и косинусов. Градусным измерением пользовались и ученые стран Ближнего и Среднего Востока, внесшие большой вклад в развитие тригонометрии.

Выдающийся немецкий математик и астроном XVв. Региомонтан отступил от шестидесятеричного деления радиуса и за единицу измерения линии синуса принял одну десятимиллионную часть радиуса, что позволило выражать синусы целыми числами, а не шестидесятеричными дробями. Аналогично поступали и многие последовавшие за ним европейские математики.

Во время буржуазной революции конца XVIII в. во Франции была введена наряду с метрической системой мер и центезимальная (сотенная) система измерения углов, в которой прямой угол делился на 100 градусов, градус- на 100 минут, минута - на 100 секунд. Эта система применяется и поныне в некоторых геодезических измерения, но всеобщего употребления пока не получила.

В связи с возникновением и развитием теории пределов и математического анализа с целью придать многим формулам возможно более простой вид в тригонометрии ввели радианное измерение дуг и углов. Термин «радиан» происходит от латинского radius — радиус.

Объемы зерновых амбаров и других сооружений в виде кубов, призм и цилиндров египтяне и вавилоняне, китайцы и индийцы вычисляли путем умножения площади основания на высоту. Однако древнему Востоку были известны в основном только отдельные правила, найденные опытным путем, которыми пользовались для нахождения объемов и площадей фигур. В более позднее время, когда геометрия сформировалась как наука, был найден общий подход к вычислению объемов многогранников.

Среди замечательных греческих ученых V—IV вв. до н. э., которые разрабатывали теорию объемов, были Демокрит из Абдеры и Евдокс Книдский.

Евклид не применяет термина «объем». Для него термин «куб», например, означает и объем куба. В XI книге «Начал» изложены среди других и теоремы, следующего содержания.

1. Параллелепипеды с одинаковыми высотами и равновеликими основаниями равновелики.

2. Отношение объемов двух параллелепипедов с равными высотами равно отношению площадей их оснований.

3. В равновеликих параллелепипедах площади оснований обратно пропорциональны высотам.

Теоремы Евклида относятся только к сравнению объемов, так как непосредственное вычисление объемов тел Евклид, вероятно, считал делом практических руководств по геометрии. В произведениях прикладного характера Герона Александрийского имеются правила для вычислений объема куба, призмы, параллелепипеда и других пространственных фигур.