Впервые этот метод применяется для определения длины окружности и формулы ее вычисления. Рассуждения выстраиваются следующим образом: так как единицей измерения длины (единичный отрезок) не совмещается с дугой окружности, можно вначале измерить длину окружности приближенно, например, как периметр вписанного (или описанного) в нее многоугольника. Чтобы увеличить точность приближенного вычисления, увеличивают (например, удвоением) число сторон многоугольника и вычисляют его периметр; теоретически этот процесс можно продолжить бесконечно. Таким образом, получается бесконечная последовательность длин периметров, вписанных в окружность многоугольников Р1, Р2, Р3,…,Рп , которая при п→∞ возрастает и ограничена сверху (например, периметром любого описанного многоугольника) и, следовательно, по теореме К. Вейерштрасса имеет предел. Этот предел называется длиной окружности и его вычисление приводит к формуле C=2πr. Аналогичные рассуждения можно провести для определения и вывода формулы площади круга, боковой поверхности и объема цилиндра, конуса, усеченного конуса.
3) Метод интегрального исчисления для вычисления площадей фигур, ограниченных сверху и снизу графиками непрерывных неотрицательных функций и объемов круглых тел основан на теоремах математического анализа о вычислении площади криволинейной трапеции и объема тела вращения по формулам
и .Примером непосредственного применения метода интегрального исчисления является вывод формулы для вычисления объема пирамиды в 11 классе.
Одна и та же фигура может иметь несколько разных формул для вычисления ее площади (объема) для разных частных случаев (так, например, известно около десятка формул площади треугольника). На формулах вычисления площадей и объемов геометрических фигур основан метод площадей (и объемов) для вычисления длин отрезков или величин углов.
Суть метода площадей (объемов):
1)запишите две или более формул площади (объема) данной фигуры, в одной из них известны все элементы, а в другую входит неизвестный элемент (элементы);
2)составьте уравнение (систему уравнений) на основе того, что эти формулы выражают одну и ту же величину;
3)решите полученное уравнение (систему уравнений) и найдите искомые элементы.
Разновидности метода площадей (объемов):
· одна фигура заменяется другой, которая ей равновелика и более удобна для решения задачи;
· отношение отрезков заменяется отношением площадей треугольников с общей вершиной (если они известны), основаниями которых являются рассматриваемые отрезки.
Данный метод и его разновидности используются и для доказательства свойств геометрических фигур (например, таким методом доказывается свойство биссектрисы угла). Как и при использовании этого метода, так и других, используют дополнительные построения и общие методы доказательства теорем.
В процессе обучения геометрии, можно выделить некоторые конкретные направления использования измерений.
Понятие величины в математике возникло в результате абстрагирования от качественных особенностей свойств реальных объектов, чтобы выделить только количественные отношения. Еще в глубокой древности в процессе измерений было найдено множество эмпирических фактов об общих свойствах величин, которые являются отражением свойств в реальном мире.
Иногда считают, что понятие величины не является специальным математическим понятием, так как в конечном итоге, как правило, обращаются с числовыми значениями величин или просто числами. Однако, как указывал академик А.Н. Колмогоров, "...более радикальным и правильным решением представляется вполне традиционный путь, восходящий к Евклиду: общие свойства скалярных величин предпосылаются систематическому курсу геометрии. "[4]
Понятие величины не потеряло своего значения в математике и в настоящее время; оно имеет ясно выраженную прикладную направленность. Так, Н.Я. Виленкин замечает: "Понятие величины является основным, когда речь идет о приложениях математики"[4]. Современная математика, давая общее представление о величине, отличает это понятие от понятия числа.
Между различными свойствами объектов и явлений окружающей действительности существуют определенные связи, часть из которых отражается в зависимостях между соответствующими величинами.
Изучение зависимостей между величинами позволяет учащимся видеть не только качественные связи различных сторон объективной реальности, т.е. на описательном уровне, но и оценивать их количественно.
Связи величин, их взаимозависимость выражаются с помощью формул. Истолкование формул в физике отличается от их истолкования в математике.
Математическая формула выражает в основном вид зависимости между символами, входящими в нее. Сами символы могут не содержать конкретного смысла. В физической формуле отражены связи между величинами реального мира.
В процессе изучения различных величин учащиеся должны знать не только их числовые характеристики, но и те свойства объектов, которые характеризуются данными величинами.
Известно, что не каждое свойство объектов, явлений можно измерять. Примерами могут служить многие понятия в психологии, педагогике, биологии, экономике (воля, смелость, вкус и т. д.). Иногда такие понятия также называют величинами, но в отличие от привычных - величинами латентными. Сравнение таких величин возможно лишь на некоторой интуитивной основе. Если говорят, что этот человек более волевой, чем другой, то о степени качества "воля" судят только через систему поступков, поведение человека. В этих случаях говорят об условных значениях величии или об условных мерах. Оценивать такие величины числами представляется искусственным.
Сложение, вычитание и другие арифметические действия с латентными величинами производить нельзя, так как не может быть установлено взаимно-однозначное соответствие между их множеством и множеством действительных чисел.
На примере использования величин в науках учащиеся знакомятся с одним из путей математизации знаний, с той ролью, которую играют математические методы в исследовании природы. Все это имеет важное значение для формирования у учащихся правильных представлений о взаимодействии математики с другими естественными науками.
Наряду с изучением конкретных величин в школе важно, чтобы учащиеся получили достаточно полное и в то же время доступное представление о:
· понятии величины, способах ее измерения;
· роли и месте величин в познании природы;
· свойствах величины, ее видах;
· сути математической обработки результатов измерений и т.д.
Понимание этих вопросов способствует формированию у учащихся научного мировоззрения. Изучая величины, учащиеся знакомятся также с основными метрологическими понятиями: размер, значение, размерность величины, эталоны единиц измерения и т.д.
Глава 2 Методика изучения геометрических величин в курсе геометрии средней школы
2.1Методика изучения длин в курсе геометрии средней школы
В традиционной школе изучение величин начинается с длины предметов.
Теория измерения длины отрезков может быть построена по такой схеме:
· Определение длины отрезка как вещественного числа;
· Описание процедуры измерения отрезка;
· Установление существования и единственности длины отрезка при данном выборе единицы измерения с использованием аксиомы Архимеда;
· Установления существования отрезка, длина которого при данном выборе единицы измерения равна любому, наперед заданному положительному числу(с использованием аксиомы Кантора, геометрического эквивалента аксиомы непрерывности).
Первые представления о длине, как о свойстве предметов, у детей возникает задолго до школы. С первых дней обучения в школе ставится задача уточнить пространственные понятия детей. Важным шагом в формировании данного понятия является знакомство с прямой линией и отрезком, как «носителем» линейной протяжённости, лишенным, по существу, других свойств.
Сначала учащиеся сравнивают предметы по длине, не измеряя их. Делают они это наложением (приложением) и визуально («на глаз»).Например, учащимся предлагается рассмотреть рисунки и ответить на вопросы: «Какой отрезок длиннее, красного или зеленого цвета?»
Затем предлагается сравнить два предмета разного цвета и разные по длине практически - наложением. Например, учащимся предлагается рассмотреть рисунки и ответить на вопросы: « Какой ремень короче (длиннее) светлый или тёмный?» Через эти два упражнения дети подводятся к пониманию длины как свойства, проявляющегося в сравнении, то есть: если два предмета при наложении совпадают, то они имеют одну и ту же длину; если же какой - либо из сравниваемых предметов накладывается на часть другого, не покрывая его полностью, то длина первого предмета меньше длины второго предмета. После рассмотрения длин предметов переходят к изучению длины отрезка. Здесь длина выступает как свойство отрезка.
Разъяснение учащимся старших классов сущности аксиомы Кантора не представляет особых трудностей.
Случай, когда на перед заданное число рационально, аксиома Кантора применяется, а используется элементарное построение. Если это число иррационально, например х=2,313113111311113…, то поступаем так: введем на прямой систему координат(начало 0, направления единицу измерения).Мы можем построить точки А1 и B1, где А1 = 2,3; B1 = 2,4 – приближения с точностью 0,1. Если существует точка М, то ОА1<OM<OB1, т.е. точка М лежит между А1 и B1, т. е. внутри отрезка А1 B1. Мы можем найти A2 = 2,31 и B2 = 2,32 и т.д.
Неограниченно продолжая этот процесс, мы получаем, что если точка М существует, то она лежит внутри каждого из отрезков бесконечной последовательности: A1B1, A2B2,…,AпBп,…, обладающей следующими свойствами: