Смекни!
smekni.com

Формы работы на уроках математики в начальных классах в процессе решения текстовых задач (стр. 13 из 15)

3) 60 – 20 = 40 (г.) – пошло на вход в школу

Ответ: 40 гирлянд.

Пока учащиеся оформляют решение задачи в тетрадях, учитель заменяет некоторые карточки.

После того, как школьники оформили решение задачи, учитель опять обращает их внимание на карточки с выражениями и просит найти второй способ решения этой задачи. Учащиеся, как и в прошлый раз, поочередно выходят к доске и проставляют порядок действий, объясняя, на какой вопрос при этом можно ответить (см. рисунок №20).


Рис. №20 Схема порядка действий в задаче

Решение задачи вторым способом выполняется устно.

Урок 69, задача №7.

Цель: повторить основные понятия теории множеств, учить решать задачи разными способами, учить определять истинность или ложность высказываний.

Оборудование: учебник, мультимедийная аппаратура, слайды, карточки с предложениями, карандаши.

Для книг из классной библиотеки Костя сделал рисунок:


Составь несколько высказываний к этому рисунку.

· Сколько всего книг о животных и книг с рассказами в этой библиотеке, если книг с рассказами 45, книг о животных 38, а книг с рассказами о животных 17?

Целью данной работы является закрепление знаний о множестве.

Учитель предлагает учащимся рассмотреть рисунок и назвать множества, которые на нем изображены (книги, рассказы, книги и рассказы о животных).

¾ Назовите элементы множества:

- рассказы (Л.Н. Толстой «Филиппок», В.Драгунский «Девочка на шаре» и другие),

- книги о животных (книга о кошках, В.Бианки «Синичкин календарь», Н.Сладков «Лесные тайнички»),

- рассказы о животных (Ю.Коринец «Ханг и Чанг», М.Ершова «Котята»)

Учитель показывает на слайде этот же рисунок, но частично раскрашенный (см. рисунок №21):


Рис.№21 Множество книг.

Дети видят, что есть такое множество книг, которое не относится к рассказам, книгам о животных и рассказам о животных. Учитель просит привести примеры такого множества (книга А.В.Волкова «Волшебник Изумрудного города», К.Чуковский «Бармалей», Д.Р.Киплинг «Маугли» и другие)

После изучения рисунка учитель дает задание учащимся составить несколько высказываний к этому рисунку с использованием слов: некоторые, существует, не все, все.

Дети называют свои предложения:

- все книги о животных – это книги;

- не все рассказы – это книги;

- некоторые рассказы – книги;

- существуют книги – рассказы о животных.

Для индивидуальной работы можно предложить нескольким учащимся карточки со следующим заданием: оценить, верно ли что…

- некоторые книги о животных – это книги (верно);

- все рассказы – книги (неверно);

- все книги о животных являются рассказами (неверно);

- существуют книги не о животных, которые не являются рассказами (верно).

Далее дети читают ниже приведенную задачу.

¾ Что мы узнали из текста задачи? (книг с рассказами 45, книг о животных 38, а книг с рассказами о животных 17)

Учитель просит учащихся взять простые карандаши в руки и наклонной штриховкой отметить все рассказы. На фоне этой штриховки отметить число 45. Затем, изменив наклон штриховки, отметить все книги о животных, отметить на этом фоне число 38.

¾ Что заметили? (на рисунке не два, а три вида штриховки, есть штриховка «клеточкой»)

¾ Обведите яркой линией эту область. Какие книги в ней содержатся? (рассказы о животных).

¾ Сколько их, запишите. (внутри области учащиеся записывают число 17)

¾ Что нас просят узнать? (сколько всего книг о животных и книг с рассказами в этой библиотеке)

¾ Что мы будем узнавать в первую очередь? (сколько всего книг содержится во множествах, отмеченных наклонной штриховкой)

¾ Какое действие мы будем при этом выполнять? (сложение, так как мы будем узнавать, сколько книг всего)

¾ Что мы можем найти после этого? (сколько книг о животных и книг с рассказами в этой библиотеке)

¾ Как мы это определим? (из всех книг вычтем книги с рассказами о животных)

После разбора задачи ученики самостоятельно записывают решение в тетради. Оно должно выглядеть следующим образом:

1) 45 + 38 = 83 (кн.) – всего в библиотеке

2) 83 – 17 = 66 (кн.) – о животных и книг с рассказами

Ответ: 66 книг.

При выполнении этого задания можно провести индивидуальную работу для слабоуспевающих учащихся. Им раздаются карточки, в которых предложены другие способы решения этой задачи.

Например:

Карточка №1.

Задание: Найди на рисунке множество, в котором книг содержится 45 – 17. Закрась это множество синим цветом. Обведи красным карандашом множество, в котором книг содержится (45 – 17) + 38.

Карточка №2.

Задание: Найди на рисунке множество, в котором книг содержится 38 – 17. Закрась это множество синим карандашом. Обведи красным карандашом множество, в котором книг содержится (38 – 17) +45.

Карточка №3.


Задание: раскрась картинку всеми имеющимися способами. Реши задачу по действиям с пояснениями.

В качестве домашнего индивидуального задания можно предложить учащимся составить похожую задачу о предметах домашнего обихода, оформить рисунок.

Урок 70, задача №8 б)

Цель: повторить связи между пропорциональными величинами, учить решать задачи разными способами.

Оборудование: учебник,

Коля и Мишка варили кашу. Этой кашей они заполнили 2 кастрюли одинакового объема и 6 банок такого же объема. Сколько литров каши сварили мальчики, если в банки они разлили на 12 литров каши больше, чем в кастрюли?

Учитель предлагает разобрать эту задачу в форме игры. Учащиеся поочередно рассказывают о том, что известно из условия задачи. Побеждает тот, кто назовет данные последним. Также учитель обращает внимание детей, если они этого не сказали, на то, что кастрюли и банки имеют одинаковые вместимости.

¾ Могли бы мы решить задачу, если бы вместимость посуды была бы разной? Почему? (дети высказывают свою точку зрения с объяснением)

Далее учитель предлагает ученикам объединиться в пары и путем обсуждения найти решение этой задачи.

После этого идет проверка решения задачи.

Один из учеников выходит к доске и, комментируя, чертит схему к задаче (см. рисунок №22):


Рис.№22Схема к задаче


Другой ученик записывает решение задачи, комментируя его.

В итоге, в тетрадях учащихся должна появиться следующая запись:

1) 6 – 2 = 4 (шт.) – банок больше, чем кастрюль

2) 12 : 4 = 3 (л) – в одной банке или кастрюле

3) 2 + 6 = 8 (шт.) – банок и кастрюль одинаковой вместимости всего

4) 3 × 8 = 24 (л) – каши сварили мальчики

Ответ: 24 литра.

Для решения задачи другим способом можно организовать работу в малых группах. Для этого необходимо, чтобы учитель заранее приготовил карточки со следующими выражениями: 6 – 2; 12 : 4; 6 : 2; 3 × 2; 6 × 3; 6 + 18 и геометрические фигуры шести цветов. Дети поочередно вынимают из коробки по одной геометрической фигуре. Потом они садятся в группы по цветам, выбирают звеньевого и получают карточку с заданием. На этой карточке написано одно из шести выражений, суть задания состоит в том, чтобы дети объяснили, на какой вопрос задачи можно с его помощью ответить.

Когда все группы выполнили это задание, к доске выходят звеньевые и становятся в порядке, соответствующем решению задачи. После этого класс записывает решение. Оно выглядит следующим образом:

1) 6 – 2 = 4 (шт.) – банок больше, чем кастрюль

2) 12 : 4 = 3 (л) – в одной банке или кастрюле

3) 6 : 2 = 3 (раза) – банок больше, чем кастрюль

4) 3 × 2 = 6 (л) – каши в кастрюлях

5) 6 × 3 = 18 (л) – каши в банках

6) 6 + 18 = 24 (л) – каши сварили всего

Ответ: 24 литра.

Итак, на втором этапе эксперимента мы провели разные формы работ на уроке при решении текстовой задачи. На контрольном этапе мы будем повторно проводить тестирование учащихся с целью определения динамики уровня сформированности умений младших школьников решать текстовые задачи.

3.3 Динамика уровней сформированности умений младших школьников решать задачи

На контрольном этапе было проведено повторное тестирование учащихся экспериментального и контрольного классов с целью определения изменений в уровнях сформированности умений младших школьников решать задачи.

По результатам повторного исследования было выявлено, что в экспериментальном классе высоким уровнем сформированности умений решать задачи обладают 21 человек (87,5%), средним – 3 человека (12,5%). В контрольном классе результаты исследований следующие: высокий уровень – 12 человек (57,1%); средний уровень – 9 человек (42,9%)