Из всех участников эксперимента 22% старшеклассников ответили, что вероятнее второй карточки. Интересен практически одинаковый ответ двух школьников разных школ (Москва и Ярославль): " Вообще – то оба случая равновероятны, но второй случай более вероятен", выражающий очевидное противоречие между бытовыми и научными представлениями школьников.
Любопытно, что профильные химико-биологические экономические классы, где курс математики существенно глубже базового, но отсутствует вероятностно – статистический материал, дают почти такой же результат (до 30 % ответов – «выигрыш второго набора более вероятен»). Не сильно отличаются от приведенных данных и результаты ответов на аналогичный вопрос в тесте, предложенном в 1998 году учителям математики на курсах повышения квалификации в Москве.
Отметим кстати, что известный любитель математических игр и парадоксов Мартин Гарднер по аналогичному поводу написал, что на самом деле выгодней вычеркивать комбинации 1, 2, 3, 4, 5 и 6 или другую же «регулярную» комбинацию. Шансы на выигрыш те же, а вот сумма при выигрыше может оказаться существенно больше, так как едва ли кому – то придет в голову зачеркнут номера порядка с 1 по 6, и потому в случае удачи не придется ни с кем делить призовой фонд.
В экспериментальной гимназии № 710 Е. А. Бунимовичем была проведена экспериментальная работа по преподаванию начальных основ вероятности в разных возрастных группах: во 2 –6 классах на занятиях развития творческих способностей; в 5 – 6, 8- 9 и 10- 11 – на уроках математики.
Опыт показал, что в возрасте начальных классов еще многое в представлениях учеников о мире недостаточно сформировано, не хватает и математического аппарата (прежде всего – простых дробей) для объяснений представлений о вероятности. В то же время основы описательной статистики, таблицы и столбчатые диаграммы, а также основы комбинаторики, систематический перебор возможных вариантов на небольшом множестве предметов возможно и даже необходимо вводить в курс начальной школы [6].
Одновременно было обнаружено, что начинать изложение основ теории вероятностей в старших классах – малоэффективно. Наработанное к этому возрасту стремление к быстрой формализации знаний, сформированное традиционным курсом математики, желание усвоить на уроке прежде всего некоторый набор правил, алгоритмов и методов вычисления фактически заменяет формирование вероятностных представлений формальным выучиванием формул комбинаторики и вычисления вероятности по классической модели Лапласа.
В тоже время, как уже было сказано, обсуждение на качественном уровне вероятностных ситуаций с учащимися старших математических классов, усвоившими достаточно формальный курс основ теории вероятностей, показывает, сколько мало знание формул комбинаторики и классической вероятностной модели способствует развитию вероятностной интуиции изживанию традиционных вероятностных предрассудков.
Как известно, опыт преподавания основ теории вероятностей в школе в период реформы математического образования 60 – 70 гг. на абстрактно – формальном уровне, в традиционной схеме урока дал в основном негативный результаты и привел к изъятию этого материала из школьной программы. Материал оказался сложен, формален, плохо усваивался .
Описанная ситуация во многом схожа с известными проблемами преподавания геометрии в школе, где сегодня можно считать уже общепризнанной необходимость периода «наглядной геометрии» и предварительной работы с учащимися по формированию пространственных представлений до изучения систематических курсов планиметрии и стереометрии [7]. Работы психологов, на которые мы уже ссылались, также утверждают, что наиболее благоприятен для формирования вероятностных представлений возраст 10 – 13 лет, что примерно соответствует 5- 7 классу российской школы. При этом очевидно, что связь со сложностью уже исходных понятий классической теории вероятностей, в 5- 7 классе абсолютно невозможны аксиоматический подход к понятию вероятности, а часто и локальная дедукция при изложении основ теории вероятностей.
Экспериментальная работа в 5 и 6 классах по пропедевтики вероятностных представлений, проведению экспериментов со случайными исходами и обсуждению на качественном уровне их результатов показал, что этот незакрепленный формальными «обязательными результатами» период дает хорошее развитие вероятностной интуиции и статистических представлений ребят. C элементами статистического мышления необходимо начинать знакомить в школе в ряде предметов, а не только в курсе математики. Нужно сделать так, чтобы на уроках ботаники и зоологии, астрономии и физики, русского языка и истории время от времени в нужном месте были сделаны разумные замечания о случайности явлений, которые изучает данная научная дисциплина. Естественно, что математика при этом не может оставаться в стороне. Самые первые представления о мире случайного дети получают из наблюдений за ними в окружающей жизни. При этом важные характерные черты наблюдаемых явлений проясняются в ходе сбора статистических сведений и наглядного их представления. Умение регистрировать статистические сведения и представлять их в виде простейших таблиц и диаграмм уже само по себе характеризует наличие у школьника некоторого статистического опыта. В нем находят отражение самые первые, пусть еще не до конца осознанные представления о неоднозначности и изменчивости реальных явлений, о случайных, достоверных и невозможных результатах наблюдений, о конкретных видах статистической совокупности, их особенностях и общих свойствах. Эти умения дают возможность формировать правильное представление не только о явлениях с ярко выраженной случайностью, но и о таких явлениях, случайная природа которых неочевидна, и затушевана многими осложняющими восприятие факторами.
В быту и на работе выпускник средней школы постоянно сталкивается с необходимостью получения и оформление некоторых сведений. На уроках физики, химии, биологии при выполнении лабораторных и практических работ ученик должен уметь оформить результаты наблюдения и опытов; на уроках географии истории, обществоведения ему необходимо пользоваться таблицами и справочниками, воспринимать информацию, представленную в графической форме. Эти умения необходимы каждому человеку, т. к. со статистическим материалом, представленном в различной форме, он постоянно встречается во всех источниках информации, рассчитанных на массовую аудиторию, - в газетах, журналах, книгах, по телевидению и т. п.
Понимание характера изучаемого стохастического явления связано с умением выделять главное, видеть особенности и тенденции при рассмотрении таблиц, диаграмм и графиков. Простейшие навыки при «чтении» таблиц и графиков позволяют подметить некоторые закономерности наблюдаемых явлений, увидеть за формами представления статистических данных конкретные свойства явлений с присущими им особенностями и причинными связями.
Типические черты изучаемых явлений, их общие тенденции могут быть выявлены с помощью средних статистических характеристик. Умение пользоваться ими характеризует наличие у учащегося представлений, связанных с центральными тенденциями в мире случайного. Понимание смысла самых простых средних показателей, таких, как среднее арифметическое, необходимо каждому ученику.
Стохастический характер окружающих явлений не может быть раскрыт без понимания степени изменчивости. Поэтому возникает необходимость в количественной оценке разброса статистических данных, которая способствует более глубокому пониманию сущности явлений и процессов, дает возможность сравнивать статистические совокупности по степени их вариации.
Одним из важнейших компонентов стохастического мышления является понимание устойчивого в мире случайностей, упорядоченности случайных фактов. Нельзя допустить, чтобы стихийно воспринимаемые в жизни отдельные стороны случайных явлений учащиеся воспринимали вне всяких взаимосвязей. Центральное место занимают здесь представления, связанные с различными экспериментальными представлениями закона больших чисел. Самый простой и доступный путь состоит в формировании представлений о вероятности как о «теоретически ожидаемом» значении частоты при увеличении числа наблюдений. При этом понимание взаимоотношения между вероятностью и ее эмпирическим прообразом – частотой приводит осознанию статистической устойчивости частоты. В то же время важную роль играет и понимание того, что количественная оценка возможности наступления некоторого события может быть осуществлена до проведения эксперимента, исходя из некоторых теоретических соображений. Таким образом, приходим к вычислению вероятностей в классической схеме.
В том случае, когда при обучении математике вероятностная интуиция не развивается, вместо верных представлений и концепций учащимися усваиваются ложные взгляды, они высказывают ошибочные суждения.
Одной из важных целей изучения вероятностно – статистического материала в школе является развитие вероятностной интуиции, формирование адекватных представлений о свойствах случайных явлений. Ведь в жизни очень часто приходится осуществлять оценку шансов, выдвигать гипотезы и предложения, прогнозировать развитие ситуации, рассуждать о возможностях подтверждения той или иной гипотезы и т. п. представление о вероятности, которое усвоено в процессе организованного, систематического изучения, отличается от обыденного, житейского именно тем, что оно является носителем представлений об устойчивости, закономерности в мире случайного, позволяет наиболее полно и правильно делать выводы из имеющейся информации.
Отметим при этом, что равно неэффективны и даже опасны как ранняя формализация, так и другая крайность, получившая сейчас отражение в некоторых экспериментальных программах – бесконечные рассуждения о вероятности вне курса математики, вне построения вероятностных моделей [6].