Мы видим, что сумма очков 7 есть более вероятное событие, чем сумма очков 8. Интересно отметить, что этот факт был замечен игроками в кости. Попытки его объяснить (и решение ряда задач по страхованию и т. п.) привели к созданию математической теории — начал теории вероятностей.
Задание 2. В ящике лежат 20 одинаковых на ощупь шаров. Из них 12 белых и 8 черных. Наугад вынимают один шар. Какова вероятность того, что он окажется белым? (Точный смысл выражения «наугад вынимается шар» будет выяснен в процессе решения.)
Решение. В этой задаче рассматривается следующий опыт: из ящика наугад вынимают шар и смотрят его цвет. Сразу напрашивается множество исходов, состоящее из двух событий: Ч= «вынутый шар черный» и Б = «вынутый шар белый». Но эти исходы неравновероятны, так как белых шаров больше и шансов вынуть белый шар больше. Для выявления в этом опыте множества равновероятных исходов внесем в опыт дополнительный элемент, не нарушающий вероятностной структуры задачи, а именно, перенумеруем все шары. Белым шарам поставим в соответствие номера с 1 по 12, а черным — номера с 13 по 20. События «вынут шар с номером k»=АKуже равновероятны, так как шары на ощупь неотличимы и вынимаются наугад. Кроме того, эти 20 событий образуют множество исходов нашего опыта. Следовательно, п = 20, а интересующему нас событию В благоприятствуют первые 12 исходов, т. е. т =12. Следовательно,
Точный смысл выражения «наугад вынимается шар» состоит в том, что введенные события Akравновероятны.
3.4 Геометрическая вероятность. Урок – семинар
Семинары характеризуются, прежде всего, двумя взаимосвязанными признаками: самостоятельным изучением учащимися программного материала и обсуждением на уроке результатов их познавательной деятельности. На них ребята учатся выступать с самостоятельными сообщениями, дискутировать, описывать свои суждения. Различают уроки – семинары по учебным задачам, источникам получения знаний, формами их проведения и т.д. наибольшее распространение получили семинары, посвященные повторению, углублению и обобщению пройденного материала. Это семинары – развернутые беседы, семинары-доклады, рефераты, творческие письменные работы, поименованное чтение, семинар-диспут, решение задач, конференции. Укажем основные случаи, когда предпочтительно организовать уроки в виде семинаров:
1) при изучении нового материала, если ученики могут его освоить самостоятельно;
2) после проведения вводных, установочных и текущих лекций. На этих семинарах рассматривается дополнительный материал, приобретаются новые знания, рассматриваются исторические сведения и практические приложения изучаемого материала;
3) после обобщения и систематизации знаний и умений учащихся по изучаемой теме;
4) при проведении урока, посвященного различным методам решения задач, выполнение заданий и упражнений.
Цель проведение семинаров состоит в том, чтобы сделать теоретические обобщения, систематизировать изученный материал, отобрать основные методы и способы решения, показать связь математики (теории вероятностей) с жизнью. Проведение семинарских занятий активизирует процесс обучения, учит учащихся выступать, формирует у них познавательные и исследовательские умения, повышают математическую культуру, развивают речь и уровень общения.
Эффективность семинарских занятий в значительной мере зависит от организации его подготовки. На подготовку к семинару необходимо выделить не менее двух недель. Учащимся сообщается тема семинара, основные вопросы теории, по которым будет проведен опрос, указываются задачи, приемами решения которых должны овладеть все учащиеся, дается некоторый набор нестандартных упражнений, в процессе решения которых необходимо проявить элементы творчества. Можно предложить учащимся самим подобрать такие упражнения и показать на семинаре рациональные способы их решения. Распределяются индивидуальные и групповые задания по подготовке сообщений по истории рассматриваемого вопроса, его практических и межпредметных приложений. В процессе подготовки к семинару ученики по рекомендации учителя изучают дополнительную литературу, читают научно-популярные книги. Подготовка к семинару является для учащихся одновременно подготовкой к очередной проверочной работе и к зачету по теме.
Семинар проводится со всеми учащимися класса. Учитель-координатор подготовки и проведения семинара. Он заблаговременно определяет тему, цель и задачи семинара, планирует его проведение, формирует основные и дополнительные вопросы темы, распределяет задания между учащимися с учетом их индивидуальных возможностей, подбирает литературу, проводит консультации, проверяет конспекты. Семинарское занятие начинается вступительным словом учителя, в котором он сообщает тему, план, цель и задачи его проведения, рекомендует на что необходимо обратить внимание, что следует записать, дает другие советы. Далее обсуждаются вопросы семинара – по каждому вопросу учителю необходимо дать комментарии, акцентировать внимание учащихся на главной мысли и математической идее сообщения, делает дополнения и обобщения, отвечает на вопросы учеников. Подводятся итоги, учитель отмечает положительное, анализирует содержание, форму выступлений учеников, указывает на недостатки и пути их преодоления.
Урок – семинар
Тема урока: Геометрическая вероятность.
Цель урока:
1) ввести понятие геометрической вероятности;
2) способствовать развитию логического и пространственного воображения учащихся;
3) воспитать самостоятельность, терпение, усидчивость.
Оборудование: доска, мел, чертежи, набор задач.
Структура урока.
1. Организационный момент.
2. Сообщение темы и цели занятия.
3. Изучение нового материала.
1) Учитель. Теория вероятностей, подобно другим математическим наукам, развилась из потребностей практики.
До конца XVII века наука так и не подошла к введению классического определения вероятности, а продолжала оперировать только с числом шансов, благоприятствующих тому или иному событию. В 30 – е годы XVIII столетия классическое понятие вероятности стало общеупотребимым. Так в трактовке Я. Бернулли “ Искусство предположений “ присутствуют обе концепции вероятности – классическая и статистическая, обе они изложены не очень четко, но существенно то, что они уже введены в рассмотрения и использования.
Однако уже в первой половине XVIII века выяснилось, что классическое понятие вероятности имеет ограниченную область применения и возникают ситуации, когда оно не действует, а потому необходимо его расширение. Таким толчком послужили работы французского естествоиспытателя Ж. Бюффона (1707 – 1788), в которой он сформулировал знаменитую задачу о бросании иглы на разграфленную плоскость и предложил ее решение.
Классического определения вероятности нельзя применить к опыту с бесконечным числом «равновероятных» исходов. К описанию такой ситуации приспособлено геометрическое определение вероятности. Т. о. геометрические вероятности—вероятности попадания точки в область (отрезок, часть плоскости и т. д.).
Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Это означает выполнение следующих предположений: поставленная точка может оказаться в любой точке отрезка L, вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L. В этих предположениях вероятность попадания точки на отрезок l определяется равенством
Р== Длина l/Длина L. (5)
Для иллюстрации схемы геометрических вероятностей рассмотрим следующие задачи.
2) Ученик. Парадокс Бертрана. Наудачу берется хорда в круге. Чему равна вероятность, что ее длина превосходит длину стороны вписанного равностороннего треугольника?
Решение 1. По соображениям симметрии можно заранее задать направление хорды. Проведем диаметр, перпендикулярный к этому направлению. Очевидно, что только хорды, пересекающие диаметр в промежутке от четверти до трех четвертей его длины, будут превосходит стороны правильного треугольника. Таким образом, искомая вероятность равна
Решение 2.По соображениям симметрии можно заранее закрепить один из концов хорды на окружности. Касательная к окружности в этой точке и две стороны правильного треугольника с вершиной в этой точке образуют три угла по 600. Условию задачи благоприятствуют только хорды, попадающие в средний угол. Таким образом, при этом способе вычисления искомая вероятность оказывается равной
Решение 3.Чтобы определить положение хорды, достаточно задать ее середину. Чтобы хорда удовлетворяла условию задачи, необходимо, чтобы ее середина находилась внутри круга, концентрического данному, но половинного радиуса. Площадь этого круга равна одной четверти площади данного; таким образом, искомая вероятность равна
Причина неоднозначности решения нашей задачи заключается в том, что за решение одной и той же задачи, пользуясь тем, что в условии задачи не определенно понятие проведения хорды на удачу, выдаются решения трех различных задач.
В самом деле, в первом решении вдоль одного из диаметров заставляют катится круглый цилиндрический стержень (рис. 7, а) . Множество всех возможных мест остановки этого стержня есть множество точек отрезка AB длины, равной диаметру. Равновероятными считаются события, состоящие в том, что остановка произойдет в интервале длины h, где бы внутри диаметра ни был расположен этот отрезок.