Эвристический прием позволяет ограничивать перебор вариантов решения, т.е. сокращать число вариантов, изучаемых перед тем, как выбрать окончательное решение.
Ту же направленность имеет обучение прикидке и оценке результата вычислений в школе. Таким образом, можно считать прикидку эвристическим приемом.
Казалось бы, что можно прикидывать на этой ступени обучения, изучаются одни правила вычисления – сначала с десятичными дробями, затем с обыкновенными… Но, именно, в этом возрасте появляется возможность заложить основу умения видеть «а нужно ли вычислять» или можно обойтись рассуждениями, заметить то, что сразу выведет нас к верному ответу.
4.2 Задания на прикидку и оценку в учебниках для 5–6 класса
Важным элементом вычислительной культуры является умение выполнять прикидку и оценку результата.
В настоящее время рекомендованы министерством образования и науки РФ следующие учебники по математике для 6 класса:
1. Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд Математика – М.: Мнемозина, 2003. – 304 с.
2. И.И. Зубарева, А.Г. Мордкович Математика 6 – М.:Мнемозина, 2006. – 264 с.
3. Г.В. Дорофеев, И.Ф. Шарыгин Математика 5–6
В основе умения выполнять прикидку лежит умение округлять числа. Потому-то этому вопросу в курсе математики 5–6 класса в учебнике под редакцией Г.В. Дорофеева уделяется достаточное внимание. С помощью упражнений закрепляется в сознании учащихся суть употребления основных терминов: «примерно», «приближенное равенство», «округление» и т.п.
Примеры (5 кл., №139,151,153):
1. В городе во время переписи населения было зарегистрировано 13882 жителя. Сообщая результаты переписи, одна газета указала, что в городе примерно 13 тысяч жителей, а другая – 14 тысяч. Какое сообщение точнее?
2. Миша задумал число и, округлив его до десятков, записал: 280. Какое число мог задумать Миша?
3. В школе 20 классов, в каждом из которых от 30 до 40 учеников. Оцените число учащихся школы. Какое из двух полученных чисел точнее указывает примерное число учащихся в школе, если в школе 758 учеников? 626 учеников?
При изучении темы «Округление десятичных дробей» также вначале округление осуществляется по смыслу, а затем по правилу округления. Учащимся предлагаются соответствующие группы упражнений. Среди них – задания на прикидку результата. Например, такие (6 кл., №459,469):
1. Выразите 1 тыс. секунд приближенно в часах. Какой из следующих ответов является лучшим приближением?
А. 2 ч. Б. 3 ч. В. 0,2 ч. Г. 0,3 ч.
2. Печенье, цена которого 26 руб. за 1 кг, расфасовано в пакеты. На упаковках указана их масса: 724 г., 615 г., 830 г. Какую стоимость для каждой упаковки, скорей всего, назовет продавец?
Важный класс задач, способствующих развитию вычислительных умений учащихся, базируется на использовании идеи сравнения. Например, в ряде случаев используется оценка суммы с опорой на умение сравнивать компоненты действия с некоторыми «рубежными» числами. Такие задачи и представлены в большинстве своем в учебнике Н.Я. Виленкина, но также присутствуют и в учебнике Г.В. Дорофеева.
Выделим приемы прикидки и оценки результата вычислений и соответствующие им задания в указанных выше учебниках.
В ряде случаев используется оценка суммы с опорой на умение сравнивать компоненты действия с некоторыми «рубежными» числами. В качестве таких чисел обычно выступают «круглые числа»: 10,100,1000 и т.п. Преимущественно в таких заданиях сравнивают сумму или произведение чисел с «рубежным» числом. Основная идея: сами числа, входящие в сумму или произведение заменить ближайшими к ним (например, округлить до целых десятичные дроби) «удобными» числами, которые легко можно сложить или умножить, а может быть и сразу заметить, что сумма или произведение заведомо меньше или больше «рубежного» числа. Подобные задания встречаются в учебниках Г.В. Дорофеева.
Примеры:
1. Пользуясь оценкой, сравните значение суммы 289+655 с 1000
Решение:
Необходимо прикинуть, что 1000 получается в результате сложения 300 и 700 (выбираем числа, которые ближе к слагаемым предложенной суммы). Заметим, что и 289<300, и 655<700, поэтому и вся сумма 289+655 меньше 1000.
2. Сравните с числом 10 сумму 2,901+2,809+2,999
Решение:
Замечаем, что каждое из слагаемых меньше трех, а значит их сумма заведомо меньше девяти, ну и, соответственно, меньше 10.
10>2,901+2,809+2,999
Кроме применения соответствующих правил, учащихся желательно учить сравнению чисел путем рассуждений. Это более завуалированный вариант сравнения с «рубежными» числами. Основная идея состоит в том, что это число не дано в задании, а дети его должны выявить сами. Этот прием можно использовать при сравнении обыкновенных дробей с разными знаменателями, т. к. такое сравнение можно осуществить проще и быстрее, нежели искать общий знаменатель, а потом сравнивать. Дроби удобно будет сравнивать с
и с 1. Не всегда можно использовать подобный прием, но во многих заданиях, он помогает экономить и время, и силы.При сравнении дробей с разными знаменателями на основе рассуждений и догадок можно разобрать сравнении таких пар чисел, как
и , и , и , и :1. Для дробей вида
и в учебниках приводится даже вполне конкретное правило: «Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше». Поэтому, нетрудно установить, что >2. Сравнить дроби
и немного сложней, но тем не менее, так же возможно, для этого нужно сравнить каждую из дробей с единицей. Замечаем, что дроби не достает до единицы , а дроби не достает . А и сравнить проще. > , поэтому расположено от единицы дальше, чем .Значит, < .3.
и так же необходимо сравнивать с единицей, сразу заметив. Что - неправильная дробь, которая всегда больше или равна единице, а - дробь правильная, меньше единицы. Поэтому < .4. Прием сравнения таких дробей, как
и , основан на сравнении каждой из дробей с половиной. < < , т. к. =Для отработки подобного приема можно использовать следующие задания:
1) Запишите дробь, равную
; меньшую и большую , со знаменателем 10,12,50.2) Начертите координатную прямую (возьмите единичный отрезок равный 14 клеткам). Отметьте на координатной прямой все правильные дроби со знаменателем 7 и дробь
. Какие из отмеченных чисел меньше ? Какие из отмеченных чисел больше ?