Смекни!
smekni.com

Формирование вычислительной культуры учащихся 5-6 классов (стр. 2 из 12)

2. Умение пользоваться приемами проверки и интерпретации ответа;

3. Приведение возможностей использования математических знаний для рационализации вычислений.

Все это еще больше убеждает нас в необходимости формирования у учащихся вычислительной культуры, наличие которой у школьников позволит не допускать ошибки, о которых говорилось ранее.

Рассмотрим подробнее каждый из компонентов вычислительной культуры.

1.1 Навыки вычислений с рациональными числами

В курсе 1–4 классов в основном завершена теоретическая подготовка учащихся по изучению операций над рациональными числами, представленных как в идее обыкновенных, так и в виде десятичных дробей. Однако на этом этапе у школьника еще не сложились навыки быстрых и безошибочных действий над рациональными числами. Поэтому, начиная работу с 5–6 классами, учитель должен с первых же уроков обратить серьезное внимание на дальнейшее развитие навыков вычислений, планируя на каждый урок включение какого-либо рода вычислительных упражнений как в форме письменных, так и в форме устных заданий.

В 6 классе во втором полугодии подводятся итоги многолетней работы по обучению детей вычислениям, и основная задача, стоящая перед учителем математики, наряду с изучением темы «Положительные и отрицательные числа» и продолжением формирования у учащихся навыков вычислений с обыкновенными дробями, организовать качественное повторение изученного 1–5-м классах, и особенно продолжить тренировку в вычислениях с натуральными числами, десятичными дробями и процентами: на следующих ступенях обучения практически не будет ни времени, ни возможностей для «дообучения» школьников вычислениям, без чего сколько-нибудь полноценное обучение математики в следующих классах невозможно.

1.2 Умение рационализировать вычисления

Рационализация вычислений требует от учащихся, помимо знаний всех основных свойств арифметических действий над числами, элементарного желания «упростить себе жизнь», затратить на выполнение, громоздкого по виду, задания как можно меньше времени, увидеть самый короткий, но от этого не менее правильный путь достижения результата.

Простейшие приемы рационализации вычислений появляются еще в 5 классе при ознакомлении учащихся с основными законами сложения и умножения: сочетательным, переместительным и распределительным. Все эти же законы продолжают «работать» и в 6 классе, но используются не только для множества натуральных чисел, но и для дробей, и для положительных и отрицательных чисел. Подсчитывая значение произведения или суммы, школьники, пользуясь этими законами, переставляют множители или слагаемые, таким образом могут выполнить вычисления быстрей и проще, чем при последовательном сложении или умножении.

А применение распределительного закона умножения, вообще является одной из тем при изучении умножения дробей в учебнике Н.Я. Виленкина и др. «Математика 6, 1 часть», т.е. помимо основного правила умножения рассматривается еще один способ, который помогает облегчить вычисления.

Приведем примеры:

1.

Подобный способ позволяет пропустить целых два действия, порой вызывающие затруднения у учащихся – это переведение в неправильную дробь смешанного числа и обратно – из неправильной дроби выделить целую часть.

2. -3,9+8,6+4,7+3,9–4,7=(-3,9+3,9)+(4,7–4,7)+8,6=8,6

В подобном задании, пользуясь переместительным законом сложения, учащиеся должны отыскать пары чисел, дающие в сумме ноль (в том числе и пары противоположных чисел). И в итоге вычисления будут максимально простыми.

Ученики должны, прежде всего, научиться не только рационально вычислять, но и в целом, так сказать, «рационально мыслить и рассуждать», т.е. искать более удобные способы не исключительно в вычислениях, но и при решении задач, при составлении уравнений, при их решении, при преобразовании различных выражений. Часто, прежде чем приступить непосредственно к вычислениям, нужно просто заметить, что то или иное выражение можно преобразовать, упростить, а лишь после этого выполнять действие.

1.3 Прикидка результата вычисления

Важным элементом вычислительной культуры является умение выполнять прикидку и оценку результата вычислений. В основе этого умения лежит умение округлять числа.

В ряде случаев бывает нужно установить, имеет ли решение некоторая задача при указанных значениях параметров, оценить порядок значения некоторого выражения, сравнить между собой значения нескольких выражений.

Умение, не производя громоздких вычислений, оценивать результат вычислений, является одним из главных критериев математической культуры учащегося, так как основывается не только на знании конкретного теоретического материала, но в первую очередь и на умении применять теоретический материал в самых разнообразных, нестандартных ситуациях. Научить этому можно, только проводя систематическую работу по выработке соответствующих умений буквально на каждом уроке. [16, 163]

В следующих параграфах будут более подробно рассмотрены приемы прикидки и оценки результата вычислений.

1.4 Устные вычисления

Успех в вычислениях во многом определяется степенью отработки у учащихся навыков устного счета. Не секрет, что у детей с прочными вычислительными навыками гораздо меньше проблем с математикой.

Организация устных вычислений в методическом отношении представляет собой большую ценность. Устные упражнения используются как подготовительная ступень при объяснении нового материала, как иллюстрация изучаемых правил, законов, а также для закрепления и повторения изученного. В устном счете развивается память учащихся, быстрота реакции, воспитывается умение сосредоточиться, наблюдать, проявляется инициатива учащихся, потребность к самоконтролю, повышается культура вычислений.

Насыщение уроков разнообразными, интересными и полезными вычислительными заданиями при большой плотности текущего теоретического материала, задач по изучаемым темам возможно лишь через совершенствование системы устных упражнений на уроках. Устный счет – это первооснова любых вычислений. Основная функция устных упражнений – актуализация опорных для конкретной темы знаний и умений, подготовка учащихся к работе на протяжении всего урока, а также систематическое повторение изученного, поддержание и совершенствование основных специальных умений и навыков, в том числе и навыков вычислений. [15, 156]

При устных вычислениях всем учащимся в классе приходится работать самостоятельно и активно, чтобы не отстать от товарищей. Следует остановиться и на вопросе о быстроте подсчёта при устных вычислениях. Конечно, устно, как правило, можно подсчитать быстрее, экономней с точки зрения затраченного времени и затраченных умственных сил. Но не это является самым ценным. При устных вычислениях значительно важнее экономии времени то, как выполнено данное действие, в чём проявилась творческая инициатива учащихся.

Устные вычисления имеют большое практическое применение. В курсе алгебры средней школы существует немало возможностей развивать и совершенствовать навыки устного счета, приобретенные учащимися в предшествующих классах.

Польза устных вычислений огромна. Применяя законы арифметических действий к устным вычислениям, дети не только повторяют их, закрепляют, но, что самое главное, усваивают их не механически, а сознательно. Сознательное усвоение законов арифметических действий – вот первая и очень ощутимая польза устных вычислений. При устных вычислениях развиваются такие ценные качества человека как внимание, сосредоточенность, выдержка, самостоятельность.

При устном счёте (иногда) надо держать в уме сами числа, над которыми производятся действия, некоторые промежуточные результаты, надо помнить некоторое количество наиболее эффективных приёмов устного счёта. Следовательно, устный счёт содействует тренировке и развитию памяти.

Следует четко определить уровень трудности заданий для устного счета в соответствии с возрастными возможностями учащихся. Хотя навыки устных вычислений из года в год совершенствуются, и повышается уровень трудности таких заданий, однако было бы ошибкой считать, что всюду, где это возможно, следует предпочитать устные вычисления письменным. Очевидно, что выполнение вычислений в уме, как правило, требует большего умственного напряжения, чем письменные вычисления, и быстрей приводит к утомлению, а в итоге и к ошибкам. Поэтому учитель не должен перегружать учащихся работой, связанной с устными вычислениями достаточно громоздких значений выражений, если такие вычисления легче выполнять письменно.

Полезно время от времени проводить математические диктанты и другие виды самостоятельных работ, в которых учащиеся, выполняя вычисления в уме, записывают только полученный ответ.

Составляя тексты математических диктантов и разрабатывая тексты самостоятельных работ, предназначенных для тренировки в устном счете, следует определить примерный уровень требований, который будет предъявлен к навыкам устных вычислений. Например, в упражнениях на сложение и вычитание целых чисел и десятичных дробей можно ограничиться данными, содержащими не более двух значащих цифр; при умножении – произведением однозначного и двузначного чисел; при делении – заданиями, не приводящими к бесконечным десятичным дробям (ели не ставится задача найти приближенного значения частного), где данные имеют не более двух значащих цифр.

В действиях с обыкновенными дробями можно ограничиться заданиями на сложение и вычитание дробей, имеющих равные знаменатели или один из знаменателей, кратный другому, и несложными примерами на умножение и деление дробей, числители и знаменатели которых, главным образом, однозначные числа.