Смекни!
smekni.com

Решение задач на экстремум (стр. 5 из 16)

Решение:

Воспользуемся обозначениями: α - центральный угол сегмента заполнения трубы водой (в радианах), F- площадь этого сечения и R- гидравлический радиус. Тогда площадь сегмента OABC равна ½ r2α, а площадь треугольника AOB равна

Поэтому

Смоченный периметр равен rα, а значит,

R=

Эта формула будет верна и в том случае, когда α будет больше π. Вообще, α может меняться от 0 до 2π.

Найдем R'и составим уравнение для нахождения критических значений α. Получаем

но α ≠ 0, поэтому sinα - αcosα = 0, или tgα = α. Полученное уравнение может быть решено графически. Единственный корень его α ≈ 4,5, или α ≈ 2580.

Нетрудно сообразить, что производная от R, равная

при переходе через α ≈ 4,5, меняет знак с + на -. Значит, при α ≈ 2580 скорость течения будет наибольшей.

Пример 3:(Задача о наибольшем количестве теплоты).

Рассматривая основной метод решения задач на экстремум, мы ограничивались функциями, имеющими во всех точках области определения производную. Но экстремум может достигаться функцией и в такой внутренней точке области определения, где производная не существует. Такими точками являются точки излома графика, угловые точки и, в частности, может быть точки, разделяющие график на части, задаваемые разными формулами. Приведем пример.

На электроплитке кипятится чайник. Установить, когда он обладает наибольшим количеством теплоты.

Для облегчения решения будем считать коэффициент полезного действия плитки равным 100 %. Отсчет времени проведем с момента, когда чайник был поставлен на плитку. Пусть в этот момент чайник обладал q калориями теплоты. Количество теплоты (в калориях), выделенное плиткой, выражается функцией Q = 0,24J2Rt, где J- сила тока в амперах, R- сопротивление в Омах и t- время нагревания в секундах, а количество теплоты в чайнике в момент времени t равно q + 0,24J2Rt. Когда чайник закипит (в момент времени t0), вода начнет испаряться. Известно, что на образование одного грамма пара уходит 539 калорий. За одну секунду плитка выделит теплоты 0,24J2R калорий, которая идет полностью на парообразование. Поэтому за 1 секунду выкипает

воды, и с ней уносится из чайника


калорий (множитель 100 здесь появляется потому, что температура кипящей воды 1000 С). Если t > t0, то выкипевшая вода унесет из чайника 0,041J2R(t - t0) калорий и останется q + 0,24J2Rt0 - 0,041J2R(t - t0) = -0,041J2Rt + q + 0,281J2Rt0 калорий. Значит, количество теплоты в чайнике выражается функцией

График этой функции состоит из двух прямолинейных участков. Угловой точкой его является точка А, в которой функция не имеет производной. По графику видно, что рассматриваемая функция имеет максимум при t = t0, равный 0,24J2Rt0 + q.

Подведем итог. Для разыскания экстремальных значений функции нужно прежде всего найти все локальные экстремумы. С этой целью нужно найти все стационарные точки, для каждой из них воспользоваться достаточными условиями минимума и максимума и вычислить экстремум в этих точках. Далее нужно вычислить значение функции в точках (если функция в них определена), где не существует производная от данной функции. Из всех найденных таким образом значений функции надо выбрать наибольшее и наименьшее.

Можно поступать и иначе. Сначала вычислить значения рассматриваемой функции во всех “подозрительных” (в отношении существования экстремумов) точках: стационарных, концевых и где не существует производная. Наибольшее и наименьшее из этих чисел и будут искомыми наибольшим и наименьшим значениями функции.


Глава 2. Применение уровневой дифференциации в обучении математики на примере темы «Задачи на экстремумы»

§1 Дифференциация обучения

1.1 Понятие дифференциации

Обучение всех школьников по единым программам не позволяет ребенку получить образование на уровне своих возможностей. Для кого-то оказывается непосильным даже средний уровень требований, а кто-то, наоборот, недополучает знаний.

Введем понятие дифференциации. Это слово происходит от латинского differentia - различие, разделение. Что же разделяется в процессе обучения? Разделяются, а точнее, выделяются отдельные группы учащихся, обучение которых строится по-разному.

Для чего выделяются эти группы? Ответив на данный вопрос, мы определим цели дифференциации.

В условиях классно-урочной системы, без введения дифференциации процесс обучения, организуется одинаково для всех учащихся и оказывается, по-разному эффективен для них. Общие интеллектуальные способности учеников разные, разная у них и обучаемость кто-то может очень быстро усвоить новый материал, кому-то нужно гораздо больше времени, большее число повторений для закрепления его, для кого-то предпочтительнее слуховое восприятие новой информации, для кого-то зрительное. Есть ученики, обладающие хорошо развитым логическим мышлением и хорошо усваивающие предметы естественно-математического цикла, но не испытывающие склонности и интереса к гуманитарным дисциплинам. А есть ученики с хорошо развитым образным мышлением, глубоко чувствующие, но... не любящие математику, физику, химию. Конечно, можно учить столь разных индивидов одинаково, но качество образовательного процесса, естественно, снизится.

Дифференциация обучения позволяет организовать учебный процесс на основе учета индивидуальных особенностей личности, обеспечить усвоение всеми учениками содержания образования, которое может быть различным для разных учащихся, но с обязательным для всех выделением инвариантной части. При этом каждая группа учеников, имеющая сходные индивидуальные особенности, идет своим путем. Процесс обучения в условиях дифференциации становится максимально приближенным к познавательным потребностям учеников, их индивидуальным особенностям.

Немаловажной задачей процесса обучения является развитие ученика: его интеллектуальной, эмоционально-ценностной, волевой сфер. Организуя дифференцированное обучение, мы усиливаем развивающие функции процесса обучения: например, в естественно-математических классах будет обращаться внимание на развитие таких мыслительных операций ученика, как анализ, синтез, выявление закономерностей и т.п., таких элементов творческой деятельности, как видение и формулирование проблемы, выдвижение гипотез, их проверка и т.д. В гуманитарных классах больше внимания будет уделено развитию образного мышления, выразительности речевых средств и т.д. В классе коррекционно-развивающего обучения на первый план выступят задачи развития тех школьно-значимых функций, которые не достаточно развиты у ученика.

Таким образом, цель дифференциации процесса обучения - обеспечить каждому ученику условия для максимального развития его способностей, склонностей, удовлетворения познавательных потребностей и интересов в процессе усвоения им содержания общего образования.

Указанная формулировка целей дифференциации свидетельствует, что характерным для нашего понимания дифференциации является выделение ее направленности на максимальное развитие каждого ученика, создание ему комфортных условий образовательного процесса. Дифференциация не направлена на селекцию детей и отбор самых талантливых с предоставлением им наиболее благоприятных условий развития. В условиях дифференциации педагог так видоизменяет процесс обучения, чтобы и менее способные дети смогли максимально развить свои способности и склонности и успешно освоить инвариантное содержание образования.

Учитывая все вышесказанное, в понимании дифференциации можно выделить три основных аспекта:

1.Учет индивидуальных особенностей учащихся.

2.Группирование учеников на основании этих особенностей.

3.Вариативность учебного процесса в группах.

Любые ли особенности нужно учитывать при дифференциации? Конечно же, нет, только те, которые важны для организации процесса обучения. Например, цвет глаз или волос ребенка учитываться не будут, тогда как скорость протекания нервных процессов, преобладающий тип памяти, сформированность интеллектуальных операций - в условиях дифференциации учитываются.

Рассмотрим кратко те особенности, которые следует учитывать в первую очередь при дифференциации учебной работы.

Сюда относится, прежде всего, уровень умственного развития учащегося. Это понятие включает предпосылки к учению (обучаемость - способность достигать в более короткий срок более выгодного уровня усвоения) и приобретенные знания (обученность).

К понятию обучаемости близко понятие общих умственных способностей. Под ними обычно понимается комплекс способностей, требуемых для осуществления учащимися учебной деятельности. Сюда относится способность запоминать материал, способность проведения логических операций, способность творческого мышления.

С умственными способностями тесно связана способность учащихся самостоятельно усваивать, знания, предполагающая наличие у них соответствующих интеллектуальных умений.

Следующей важной особенностью является скорость усвоения - комплексное явление, существенный показатель которого не столько скорость запоминания, сколько темп обобщений.

Кроме умственных способностей в учебной работе проявляются и специальные особенности, а также одаренность детей (прирожденные задатки для формирования способностей).