Смекни!
smekni.com

Решение задач на экстремум (стр. 4 из 16)

Отсюда х1х2…хn≤(с/n)n ( здесь знак равенства имеет место тогда и только тогда, когда х1 = х2 = …= хn). Следовательно, наибольшее значение произведения х1х2…хn равно (c/n)n и получается оно при х1 = х2 = …= хn. Теорема доказана.

Пример 1:

Найти наибольшее значение функции х4(32-х4).

Поиски решения.

Данная функция принимает отрицательные значения при

, а при
-положительные. Поскольку ее наибольшее значение надо искать среди значений х меньших , чем

Если мы положим х4 = у, то задача сведется к нахождению наибольшего значения многочлена второй степени, имеющего вид:

- у2 +32у.

Однако если проявить наблюдательность и заметить, что сумма множителей х4 и (32 - х4) является величиной постоянной, то можно воспользоваться теоремой 3 и решить задачу проще.

Пример 2:

Найти наибольшее значение функции 3х2 - 2х3 при 0<х<3/2.

Поиски решения.

Во-первых, выясним, почему здесь на независимую переменную х наложены ограничения. Если допустить, что х<0, то данная функция не будет иметь наибольшего значения, так как она будет неограниченно возрастать при неограниченном возрастании абсолютной величины аргумента х, принимающего отрицательные значения. Например, при х = -1000 значение данной функции будет равно 3 10002 + 2 10003. Если же допустить, что х>3/2, то окажется, что 3х2 - 2х3<0. При значениях же х, заключенных между нулем и числом 3/2, все значения данной функции будут положительными. Поэтому наибольшее значение надо искать при таких значениях х, которые удовлетворяют неравенствам 0<х<3/2.

Если мы запишем нашу функцию в виде х2 (3 - 2х), то увидим, к сожалению, что сумма сомножителей х2 и (3 - 2х) не постоянна. И вот тут-то надо проявить изобретательность и записать данную функцию в виде произведения трех сомножителей, а именно так: х х (3 - 2х).

Решение. Очевидно, что 3х2 - 2х3 = х2(3 - 2х) = х х (3 - 2х).

При условиях нашей задачи в последнем произведении все три множителя положительны и их сумма равна 3, т.е. является величиной постоянной.

По теореме 4 наша функция будет иметь наибольшее значение при условии, что х = х = 3 - 2х, т.е. при х = 1. И само наибольшее значение нашей функции будет равно тоже 1. Если мы положим, например, х = 5/4, то значение нашей функции окажется равным 25/32, т.е. окажется меньшим единицы.

Пример 3:

Найти наибольшее значение функции

y=4

на интервале (-∞;
).

Решение:

y=4

=
=
=2x-1+
.

Так как по условию х<1/2, то 2х-1<0 и

<0. Воспользуемся неравенством | at+b/t | ≥2

для случая t<0. Тогда y=2х-1+

≤-2
, причем знак неравенства достигается тогда и только тогда, когда

2х-1=

, и 2х-1<0 .

И последней системы находим х=

Ответ: maxy(x)=y(

)=-2

(-∞;

)

2.2 Универсальный метод решения задач на экстремумы

Мы рассмотрели довольно много задач на нахождение экстремумов. Те приемы, которыми мы решали эти задачи, оказались весьма разнообразными и порой, довольно искусственными. Дело обстоит так, что почти для каждой задачи на экстремум приходилось «изобретать» подходящий для нее прием. Возникает поэтому вопрос: а нет ли достаточно общего приема решения задач на экстремумы? Такой прием есть. Его дает математический анализ.

Общий прием решения задач на экстремум опирается на теорему Ферма.

Если функция у = f(х) (имеющая локальную производную) при х = х0 принимает локальный максимум или минимум, то производная от этой функции при х = х0 обращается в 0.

Геометрически это означает, что касательная к графику функции в соответствующей точке его параллельна оси х-ов

Теорема Ферма очень наглядна. И все же докажем ее.

Пусть х0 - точка максимума функции у = f(x), т.е. при х = х0 эта функция принимает наибольшее значение. Дадим х0 достаточно малое приращение h. Новое значение аргумента х0 + h будет достаточно близким к х0, и т.к. при х = х0 данная функция имеет максимум, то f(x0+h)-f(x0)≤0. Поэтому

Если же дать х0 отрицательное приращение (достаточно малое по абсолютной величине), то получим:

Оказалось, что одно и то же число f '(x0) не положительно и неотрицательно. Это означает, что это число равно 0, т.е. f '(x0) = 0. Рассуждения в случае минимума аналогичны.

Чему же учит нас теорема Ферма? Она учит нас тому, что значения аргумента, при которых данная функция f(x) имеет локальные минимумы, следует искать среди корней уравнения f '(x) = 0. Она выражает необходимое условие экстремума:

Для того чтобы функция (имеющая производную) имела при х = х0 максимум или минимум, необходимо, чтобы производная при этом значении х была равна 0.

Необходимо, но не достаточно! Производная может быть равна 0, и все же при этом значении х функция экстремума может и не иметь. Так, например, производная функции у = х3 (у' = 3х2) при х = 0 обращается в 0, но эта функция при х = 0 экстремума не имеет (рис.2). Значит, уравнение f '(х) = 0 дает лишь «подозрительные» на экстремум значения х.

Как же из этих «подозрительных» значений выделить те, при которых рассматриваемая функция действительно имеет экстремумы?

Как для выделенных значений установить вид экстремума?

По этим вопросам мы ограничимся соображениями, источником которых является наглядность. Рассмотрим рисунок, на котором изображены максимум и минимум функции у = f(x). По этому рисунку установим, какие по знаку значения принимает производная функция f '(x) для значений х, достаточно близких к х0, меньших и больших его. Если при х = х0 данная функция имеет максимум, то для значений х, меньших х0, но достаточно близких к х0, производная будет положительна, а для больших- отрицательна, т.к. в первом случае касательная к графику функции образует с положительным направлением оси х-ов острый угол, а во втором- тупой.

Если же при х = х0 функция принимает минимальное значение, то получается наоборот. Таким образом, будет ли «подозрительная» точка х0 точкой экстремума и, если будет, то какого именно (максимума или минимума), зависит от значений, принимаемых в достаточной близости слева и справа от точки х0 производной функцией. Все возможные случаи можно записать в следующей таблице.

х0+Δх, Δх<0 х0 х0+Δх Поведение f(x)
f '(x)f '(x)f '(x)f '(x) +-+- 0000 -++- максимумминимумвозрастает (экстремума нет)убывает (экстремума нет)

Вот этой таблицей и можно пользоваться при решении задач на экстремумы.

Но можно из этой таблицы сделать новые выводы и пользоваться ими. Вот о каких выводах идет речь. В случае максимума с возрастанием х и переходом через значение х0 производная убывает, поэтому производная от этой производной(т.е. производная второго порядка) отрицательна. В случае минимума производная при переходе х через х0 возрастает, а значит, производная второго порядка положительна. Поэтому если в «подозрительной» точке х0 производная второго порядка f ''(x0) отрицательна, то в этой точке данная функция имеет максимум, если же f ''(x0) положительна, то функция принимает минимальное значение.

Чтобы проиллюстрировать рассмотренный общий прием решения задач на экстремумы, рассмотрим пример.

Пример 1: (Задача о прямоугольнике наибольшей площади)

Из куска стекла, имеющего указанные форму и размеры, нужно вырезать прямоугольную пластину наибольшей площади.

Решение.

Площадь пластины S = xy. За независимую переменную примем х (0<х≤100). Тогда из подобия треугольников АВЕ и СDЕ следует:

Найденное значение х выходит из промежутка изменения х. Поэтому внутри этого промежутка стационарных точек нет. Значит, наибольшее значение S принимает в одном из концов промежутка, а именно при х = 100 (мм), а тогда у = 60 (мм) и S = 6000 (мм2).

Пример 2: (Задача о скорости течения воды в трубе)

По трубе, сечение которой круг с радиусом r, течет вода. Известно, что скорость течения пропорциональна так называемому гидравлическому радиусу профиля сечения (заполненного водой). Гидравлическим же радиусом профиля называется отношение площади профиля к длине смоченного (подводного) периметра профиля. При каком заполнении трубы водой скорость течения (при неизменных других условиях) будет наибольшей?