В конце XIX — начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, но без лишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, составляли сборники задач на смекалку, преобразование фигур, решение головоломок. Широко применялись в обучении и развитии детей математические игры, в ходе которых был необходим подробный и чёткий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность.
В 20-50-е гг. XX в. не наблюдалось особых различий в подходах к отбору содержания и методов обучения. Предполагалось развивать способность ориентироваться в пространстве и времени, различать формы и величины, числа и действия над ними, представления о мерах и делении целого на части.
Разработка психолого-педагогических вопросов методики развития математических представлений у детей дошкольного возраста в 60-70-е гг. XX столетия строилась на основе методологических позиций советской психологии и педагогики. Изучались закономерности становления представлений о числе, развития счётной и вычислительной деятельности. В 80-е гг. начали обсуждаться пути совершенствования, как содержания, так и методов обучения детей дошкольного возраста математике. В начале 90-х гг. XX в. наметилось несколько основных научных направлений.
Согласно первому направлению, содержание обучения и развития, методы и приёмы конструировались на основе идеи преимущественного развития у дошкольников интеллектуально-творческих способностей (Ж.Пиаже, Д.Б. Эльконин, В.В.Давыдов, А.А. Столяр и др.)
Второе положение базировалось на преимущественном развитии у детей сенсорных процессов и способностей (А.В. Запорожец, Л.А. Венгер, Н.Б. Венгер и др.)
Третье теоретическое положение, на котором базируется математическое развитие дошкольников, основано на идеях первоначального (до освоения чисел) овладения детьми способами практического сравнения величин через выделение в предметах общих признаков — массы, длины, ширины, высоты (П.Я.Гальперин, Л.С.Георгиев, В.В.Давыдов, А.М. Леушина и др.)
Четвёртое положение основывается на идее становления и развития определённого стиля мышления в процессе освоения детьми свойств и отношений. (А.А. Столяр, Р.Ф. Соболевский, Т.М. Чеботаревская, Е.А.Носова др.) [9, стр. 29]
В монографии Г. С. Виноградова «Русский детский фольклор. Игровые прелюдии» предпринята классификация детского фольклора, в частности считалок, в основу которых положен словарный состав. Такая классификация, вполне обоснована, и до сих пор не было предложено ничего лучшего. Г. С. Виноградов отнес к считалкам-числовкам стихи, содержащие счетные слова (Раз, два, три, четыре, Мы стояли на квартире), «заумные» (искаженные) счетные слова (Первинчики-другинчики, Летели голубинчики) и эквиваленты числительных (Анзы, дванзы, три, калынзы – слово «калынзы» здесь является эквивалентом числительного «четыре»). К заумным Виноградов отнес считалки, целиком или частично состоящие из бессмысленных слов; к считалкам-заменкам – стихи, не содержащие ни заумных, ни счетных слов. Считалки, жеребьевки, песенки и приговоры, входящие в игры, и составляют игровой фольклор [3, стр. 5].
Ориентировка в современных программах развития и воспитания детей даёт основание для выбора методики. В современные программы («Детство», «Развитие», «Радуга», «Истоки» и др.), как правило, включается то логико-математическое содержание, освоение которого способствует развитию познавательно-творческих и интеллектуальных особенностей детей.
Для современных программ математического развития детей характерно следующее:
· направленность осваиваемого детьми математического содержания на развитие их познавательно-творческих способностей и в аспекте приобщения к человеческой культуре;
· обучение детей строится на основе включения активных методов и форм и реализуется как на специально организованных занятиях, так и в самостоятельной и совместной деятельности со взрослыми;
· используются те технологии развития математических представлений у детей, которые реализуют воспитательную, развивающую направленность обучения и активность обучающегося. Современные технологии определяются как проблемно-игровые;
· важнейшее условие развития, прежде всего, заключается в организации обогащённой предметно-игровой среды (эффективные развивающие игры, учебно-игровые пособия и материалы);
· проектирование и конструирование процесса развития математических представлений осуществляется на диагностической основе [16, стр. 27].
Но вернемся к предоснове становления методики развития математических представлений, которую составляло устное народное творчество. Выдающиеся отечественные педагоги К.Д. Ушинский, Е.И. Тихеева, Е.А. Флерина, А.П.Усова, А.М. Леушина и другие неоднократно подчеркивали огромные возможности фольклорных форм как средства воспитания и обучения детей. К малым фольклорным жанрам относятся произведения, различающиеся по жанровой принадлежности, но имеющие общий внешний признак – небольшой объем. Малые жанры фольклорной прозы очень многообразны: загадки, пословицы, поговорки, прибаутки, потешки, считалки, скороговорки и др. Это сокровищница русской народной речи и народной мудрости. Эти маленькие поэтические произведения полны ярких образов, построенных нередко на прекрасных созвучиях и рифмах. Это – явление и языка, и искусства, соприкосновение с которым очень важно уже с малых лет.
Таким образом, устное народное творчество приносит радость приобщения к светлым мыслям, способствует не только знакомству, закреплению, конкретизации знаний детей о числах, величинах, геометрических фигурах и телах и т.д., но и развитию мышления, речи, стимулированию познавательной активности детей, тренировке внимания и памяти. Оно может широко использоваться в работе с дошкольниками как прием, побуждающий к приобретению знаний – при знакомстве с новым материалом (явлением, числом, буквой); как прием, обостряющий наблюдательность, – при закреплении определенного знания (правила); как игровой (занимательный) материал, отвечающий возрастным потребностям детей дошкольного возраста.
логический математический речевой развитие
3. Реализация идеи интеграции логико-математического и речевого развития дошкольников
Интеграция (лат. integraio — восстановление, восполнение; целый) понимается как сочетание и взаимообогащение некоторого содержания за счет качественных изменений связей между содержательными разделами; состояние связывания отдельных дифференцированных частей и функциональных систем в целое, а также процесс, ведущий к такому состоянию.
Относительно дошкольного возраста идея интеграции содержательных разделов и деятельностей основана на:
• необходимости целостного «видения» и осуществления развития детей;
• интегрированности представлений детей о мире;
• более глубоком осознании осваиваемого содержания в том случае, если оно представлено во всевозможных связях и отношениях (что и обеспечивает интеграция).
Использование интеграции позволяет: активизировать интерес дошкольников к осваиваемой проблеме и к познанию в целом; способствует обобщению и системности знаний и комплексному решению проблем; обеспечивает перенос освоенного в новые условия [16, стр. 307].
Интеграция логико-математического и речевого развития основана единстве решаемых в дошкольном возрасте задач. Развитие классификации, сериации, сравнения, анализа осуществляется в процессе игр с логическими блоками, веществами, наборами геометрических фигур; в ходе выкладывания силуэтов, выделения отличий и сходства геометрических фигур и т. п. В процессе развития речи активно используются упражнения и игры, предусматривающие данные операции и действия в ходе установления родо-видовых отношений (транспорт, одежда, овощи, фрукты и т. п.) и последовательностей событий, составления рассказов, что обеспечивает сенсорное и интеллектуальное развитие детей.
Используются разнообразные литературные средства (сказки, истории, стихотворения, пословицы, поговорки). Это своего рода интеграция художественного слова и математического содержания. В художественных произведениях в образной, яркой, эмоционально насыщенной форме представлены некоторое познавательное содержание, «интрига», новые (незнаковые) математические термины (например, тридевятое царство, косая сажень в плечах и т. п.). Данная форма представления очень «созвучна» возрастным возможностям дошкольников.
Широко используются сказки и рассказы, в которых сюжет часто построен на основе некоторого свойства или отношения (например, сюжет «Маша и медведи», в котором смоделированы размерные отношения — серия из трех элементов; сказки по типу «гномы и великаны» («Мальчик-с-пальчик» Ш. Перро, «Дюймовочка» Г.Х.Андерсена); истории, моделирующие некоторые математические отношения и зависимости (Г. Остер «Как измеряли удава», Э. Успенский «Бизнес крокодила Гены» и т. п.). Сюжет, образы персонажей, «мелодика» языка произведения (художественный аспект) и «математическая интрига» представляют собой единое целое.
В дидактических целях часто используются произведения, в названии которых присутствуют указания на числа (например, «Двенадцать месяцев», «Волк и семеро козлят», «Три поросенка» и т. п.). В качестве приема применяются специально сочиненные для дошкольников стихотворения, например С. Маршака «Веселый счет», Т. Ахмадовой «Урок счета», И.Токмаковой «Сколько?»; стихотворения Э. Гайлан, Г. Виеру, А. Кодырова и др. Данные описания цифр, фигур способствуют формированию яркого образа, быстро запоминаются детьми.