Элементарные геометрические преобразования играют ведущую роль в обучении решению задач на построение. Трудно переоценить роль задач на построение в формировании математического мышления школьников.
С древних времен геометрические построения способствовали развитию не только самой геометрии, но и других разделов математики. Задачи на построение циркулем и линейкой и сегодня считаются математически весьма интересными, и вот уже более 100 лет это традиционный материал школьного курса геометрии.
Они по своей постановке и методам решения объективно призваны развивать способность отчетливо представлять себе ту или иную геометрическую фигуру и, более того, уметь мысленно оперировать элементами этой фигуры. Задачи на построение могут способствовать пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования с помощью элементарных геометрических преобразований. Все это является важной предпосылкой становления пространственного мышления школьников, исследовательских и творческих умений, геометрической интуиции.
Таким образом, геометрические преобразования представляют одну из содержательных линий школьного курса геометрии. Их изучение позволяет наиболее полно раскрыть практическую значимость, показать область применения геометрических знаний. В то же время изучение геометрических преобразований обеспечивает развитие пространственного, логического, абстрактного мышления, математической интуиции учащихся именно в том возрасте, когда они имеют наиболее ярко выраженные способности к восприятию пространственных форм окружающего мира.
Перемены в жизни общества трансформируют взгляды на роль и место изучения геометрических преобразований в условиях дифференцированного обучения, на содержание программ и систему работы с учащимися профильных классов и классов, непосредственно предшествующих профильным, то есть предпрофильным.
При рассмотрении целей обучения теме «Геометрические преобразования» в 8-9 классах необходимо учитывать общие цели обучения математике, цели обучения геометрии, запросы общества, личностные потребности и возможности учащихся.
Цели обучения математике на современном уровне ее развития определены в работе Г.И. Саранцева:
1. Образовательные цели: овладение системой математических знаний, умений, навыков, дающих представление о предмете математики, ее языке, символике, методе познания, математическом моделировании, алгоритме, периодах развития математики, специальных математических приемах.
2. Воспитательные цели: формирование мировоззрения учащихся, логической и эвристической составляющих мышления, воспитание нравственности, культуры общения, самостоятельности, активности, эстетического воспитания школьников.
3. Практические цели: формирование умений строить математические модели простейших реальных явлений, исследовать явления по заданным моделям, конструировать приложение моделей; приобщение к опыту творческой деятельности и формирование умений применять его, ознакомление с ролью математики в научно-техническом прогрессе, современной науке и производстве.
Геометрические преобразования могут эффективно «работать» на достижение указанных целей.
По мнению В.А. Гусева, при обучении математике необходимо учитывать: 1) выполнение требования получения всеми учащимися основ математических знаний, умений, навыков, которые являются базовой составляющей развивающейся личности каждого школьника; 2) формирование основных стержневых качеств личности, в формировании которых обучение математике играет существенную роль (умственное воспитание, составляющие творческого потенциала, мировоззрение, нравственное и трудовое воспитание); 3) специальные задачи, характерные только для математического образования (устная и письменная математическая речь, использование математических приборов, построение моделей реальных ситуаций, развитие пространственного мышления, математической интуиции и воображения). Геометрические преобразования естественным образом вписываются в достижение этих целей.
Курс геометрии, по мнению Г.Д. Глейзера, должен быть сконструирован таким образом, чтобы он развивал у учащихся следующие качества интеллекта: геометрическую интуицию, пространственное и логическое мышление, способность к конструктивно-геометрической деятельности и владение символическим языком (хотя бы в минимальном объеме). Цели обучения геометрии автор представляет в виде синтеза прикладных, научных (собственно геометрических) и общекультурных целей.
Кроме общих целей обучения математике в программах есть уточнение, которое предусматривает формирование у учащихся устойчивого интереса к выбранному предмету, выявление и развитие их способностей, ориентацию на профессии, существенным образом связанные с выбранной деятельностью, подготовку к обучению в вузе.
Специфика процесса обучения геометрии должна состоять в ориентации учащихся на правильный выбор направления обучения в старших классах и способности (готовности) к обучению в классе определенного профиля.
Геометрические преобразования, таким образом, обладая мощным потенциалом обучения, развития и воспитания учащихся, очень слабо его реализуют на современном этапе.
§5. Основные затруднения учащихся по освоению материала по теме «Движение» и их причины, связанные с особенностями когнитивных процессов подростков
Геометрия является одной из самых сложных учебных дисциплин и вызывает у школьников определенные трудности. Ориентация на личность ученика требует, чтобы дифференциация обучения математике, в частности геометрии, учитывала потребности всех школьников – не только сильных, но и тех, кому этот предмет дается с трудом или чьи интересы лежат в других областях. Прерогатива и особенность математики – развитие абстрактного и логического мышления, т.е. качеств личности, необходимых для освоения новых областей знаний, облегчения адаптации к постоянно меняющимся условиям жизни.
Для практической реализации идеи дифференциации в обучении геометрии требуется перестройка всей методической системы. Необходимо создать разноуровневые и профильные программы и учебники, разнообразное научно-методическое обеспечение, направленное на организацию дифференциации обучения на уроках.
Основной отличительной чертой учебного процесса в 8-9 классах является то, что именно в этот период происходит подготовка учащихся к выбору профиля обучения в старших классах. Учитывая то, что в данных классах обучение происходит в рамках уровневой дифференциации, то добавление к имеющейся дифференциации элементов профилирования позволит сориентировать учащихся на выбор профиля обучения в старших классах в соответствии с возможностями и способностями школьников. Необходимо отметить, что часть учащихся заканчивает свое образование курсом основной школы и, следовательно, выделенный нами вид дифференциации поможет им при выборе дальнейшего направления обучения или профессиональной деятельности. При такой дифференциации обучения учитываются индивидуальные различия учащихся. Отнесение ученика к группе определенного уровня при обучении в 8-9 классе основывается на его общем интересе к предмету математики, учитывающем приоритетные склонности личности.
Основываясь на выделенных общих целях обучения геометрии, уточним цели обучения геометрическим преобразованиям для учащихся 8-9 классов. Наше уточнение, в первую очередь, обосновывается познавательными интересами учащихся.
При уровневой дифференциации обучения учитываются индивидуальные различия учащихся в обученности и общих умственных способностях. При разделении на группы учащихся 8-9 классов целесообразно использовать предметные познавательные интересы и специальные способности. Школьников, входящих в одну группу, могут объединять общие интересы к некоторой предметной области. Целесообразно выделять то количество групп учащихся в классе, чтобы по своему качеству они соответствовали профилям обучения в данной школе. Например, математическое направление, гуманитарное и естественнонаучное направления.
Для того чтобы разработать эффективную методику изучения геометрических преобразований, необходимо учитывать особенности развития учащихся в этом возрасте.
От 13 до 16 лет – подростковый возраст. Это период между детством и зрелостью. У подростка стремительно меняется физиология, проявляются неловкость в движениях, эмоциональная неуравновешенность, повышенная рефлексия.
В подростковом возрасте, подчеркивал Л.С. Выгодский [7], имеет место период разрушения и отмирания старых интересов, и период созревания новой биологической основы, на которой впоследствии развиваются новые интересы. Как правило, подростки не удовлетворены собой, семьей, собственной внешностью. Они недовольны школой, учебниками, учителями, оценками, взрослыми, так как «они нас не понимают», не доверяют родителям, не признают их мнения. Даже в тех семьях, где ребенок принимает мнение родителей, для него это период внутренних переживаний. Подросток открывает себя, познает себя в общении с окружающим.
В этот период открытий наступают и разочарования. Подросток старается доказать окружающим, что он личность и, что он или она достойны быть в коллективе; у ребят существуют определенные особенности в общении, сокращается круг вопросов к учителю и родителям – большинство ребят ориентированы на общение на улице.
Обратим внимание на развитие мышления в подростковом возрасте. Главное в развитии мышления – овладение подростком процессом образованием понятий, которые ведет к высшей форме интеллектуальной деятельности, новым способам поведения.