5. 1) Постройте точку А1, в которую переходит точка А при повороте около точки О на угол 60° по часовой стрелке.
2) Постройте фигуру, в которую переходит отрезок АВ при повороте около точки О на угол 60° по часовой стрелке.
6. Постройте фигуру, в которую переходит треугольник АВС при повороте его около вершины С на угол 60°.
7. Даны точки А, В, С. Постройте точку С’, в которую переходит точка С при параллельном переносе, переводящем точку А в В.
8. Параллельный перенос задается формулами х’ = х + 1, у’ = у - 1. В какие точки при этом параллельном переносе переходят точки (0; 0), (1; 0), (0; 2)?
9. Найдите величины a и b в формулах параллельного переноса х’ = х + а, у’ = у + b, если известно, что:
1) точка (1; 2) переходит в точку (3; 4); 2) точка (2; -3) – в точку (-1; 5); 3) точка (-1; -3) – в точку (0; -2).
В отличие от симметрии и поворота определение параллельного переноса дается с помощью формул, указывающих связь между координатами точки и ее образа при данном параллельном переносе. Такое определение выглядит формальным, а не конструктивным, как у предыдущих видов движения, однако, если проиллюстрировать на рисунке эти формулы, то можно заметить, что они тоже дают способ построения точки, в которую переходит данная точка при параллельном переносе: она смещается на а вдоль оси абсцисс и на b вдоль оси ординат. Это преобразование дает еще один пример движений, причем все свойства движений для параллельного переноса являются, видимо, самыми очевидными для учащихся.
В результате изучения материала учащиеся должны:
знать определение движения, его свойства; определения точек и фигур, симметричных относительно данной точки, симметричных относительно прямой; определение поворота, формулы, задающие параллельный перенос и геометрические свойства параллельного переноса;
уметь применять свойства движений для распознавания фигур, в которые переходят данные фигуры при движении, строить точки и простейшие фигуры, симметричные данным относительно данной точки и данной прямой, приводить примеры фигур, имеющих центр симметрии или ось симметрии, применять свойства движения в решении задач на симметрию фигур; строить образы простейших фигур при повороте и параллельном переносе; выявлять сонаправленные и противоположно направленные лучи в рассматриваемых конфигурациях.
Планирование изучения материала:
Номер пункта. | Содержание материала. | Количество часов. |
8 класс. § 9. Движение. | 12 ч. | |
82, 8384, 858687, 8889, 90 | Преобразование фигур. Свойства движения.Симметрия относительно точки. Симметрия относительно прямой.Контрольная работа.Поворот.Параллельный перенос и его свойства. Существование и единственность параллельного переноса.Сонаправленность полупрямых. Равенство фигур. | 2 ч.3 ч.1 ч.1 ч.3 ч.2 ч. |
В §9 понятие «преобразование» вводится на наглядно-интуитивном уровне: «Если каждую точку данной фигуры сместить каким-нибудь образом, то мы получим новую фигуру. Говорят, что эта фигура получена преобразованием из данной». Соответственно, движение понимается как преобразование одной фигуры в другую, если оно сохраняет расстояние между точками. Важно подчеркнуть, что в учебнике А.В. Погорелова рассматриваются преобразования не всей плоскости, а только фигур. В этом случае неизвестно что происходит с остальными точками плоскости, в отличие от преобразования плоскости, где для каждой точки плоскости можно указать ее образ и прообраз. Возможно, рассмотрение преобразований фигур, а не плоскости связано с толкованием понятия движения с механической точки зрения.
Еще одна особенность учебника А.В. Погорелова состоит в том, что определение преобразований и способ построения фигур при преобразованиях как бы слиты воедино. Определения обладают высокой степенью наглядности, чем позволяют воображению легко конструировать необходимые образы.
Далее рассматриваются теоретические основы свойств движений, симметрии относительно точки и прямой. Все вводимые понятия и доказательства теорем достаточно полно проиллюстрированы, но не приводится разбор конкретных задач, чего нельзя сказать о рассмотрении вопроса о повороте плоскости около данной точки. После рассмотрения теоретических сведений представлена решенная задача на построение точки (фигуры), в которую переходит точка (отрезок) при повороте около точки О на угол 60° по часовой стрелке. Некоторое внимание уделено вопросу использования метода координат в изучении свойств преобразований, например параллельного переноса.
Заметим также, что при изучении движений такое важное понятие, как композиция движений, в учебнике А.В. Погорелова специально не определяется.
В дидактических материалах В.А. Гусева и А.И. Медяника к учебнику А.В. Погорелова «Геометрия, 7-9» представлены четыре самостоятельные работы, контрольная работа в нескольких вариантах разного уровня сложности и дифференцированные задания как продолжение и развитие самостоятельных работ, где более четко учтены индивидуальные особенности учащихся. В то же время эти задания предполагают более высокий уровень развития учащихся, так как направлены на развитие у них логического мышления. В вариантах самостоятельных и контрольной работ основной акцент делают на такие обязательные результаты обучения школьников, как:
а) представления о движении и о связи его с понятием равенства фигур;
б) построение фигур, симметричных данным, при осевой и центральной симметриях.
В.Н. Литвиненко и А.Э. Попович разработали рабочую тетрадь для 8 класса к учебнику А.В. Погорелова «Геометрия 7-11», которая является методическим пособием для занятий классов общеобразовательной школы. Она предназначена помочь организовать работу учащихся в классе и дома. К каждому из пунктов «§9. Движение» учебника приведены задачи с готовыми чертежами, которые нужно дополнить построениями и записать полученный ответ или произведенные действия. И если в дидактических материалах, рассмотренных выше, авторами представлены задачи, направленные на расширение задачного материала учебника, то рабочая тетрадь содержит задачи на закрепление базовых понятий темы.
Учебник Л.С. Атанасяна и др. «Геометрия 7-9» выгодно отличается от других. Преимущество состоит в том, что учащиеся по данному учебнику самостоятельно могут освоить понятие движения и его видов.
Планирование изучения материала:
Номер параграфа. | Содержание материала. | Количество часов. |
8 класс. Глава V. Четырехугольники. | 3 ч. | |
3 | Прямоугольник, ромб, квадрат. [Осевая и центральная симметрии.]Контрольная работа. | 3 ч.1 ч. |
9 класс. Глава XIII. Движения. | 8 ч. | |
12 | Понятие движения.Параллельный перенос и поворот.Решение задач.Контрольная работа. | 3 ч.3 ч.1 ч.1 ч. |
Знакомство с осевой и центральной симметрией начинается в 8 классе. Эти преобразования рассматриваются не как преобразования плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости происходит в 9 классе в главе «Движения», где движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. Здесь же рассматриваются основные виды движений: осевая и центральная симметрии, параллельный перенос и поворот. На примерах показывается применение движений при решении геометрических задач разной степени сложности. Кроме того, исследуется важный вопрос о связи понятий наложения и движения. Понятие наложения, на основе которого определялось равенство фигур, относится в данном курсе геометрии к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Этот пункт «Наложения и движения» обозначен звездочкой, что говорит о необязательности его изучения. Задачный материал темы нацелен на выработку навыков построения образов точек, отрезков, треугольников при симметриях, параллельном переносе и повороте.
1. Даны две прямые a и b. Постройте прямую, на которую отображается прямая b при осевой симметрии с осью a.
2. Даны прямая a и четырехугольник ABCD. Постройте фигуру F, на которую отображается данный четырехугольник при осевой симметрии с осью a. Что представляет собой фигура F?
3. Даны точка O и прямая b. Постройте прямую, на которую отображается прямая b при центральной симметрии с центром O.
4. Даны точка O и треугольник ABC. Постройте фигуру F, на которую отображается треугольник ABC при центральной симметрии с центром O. Что представляет собой фигура F?
5. Даны треугольник, трапеция и окружность. Постройте фигуры, которые получаются из этих фигур параллельным переносом на данный вектор
.6. Посторойте отрезок A1B1, который получается из данного отрезка AB поворотом вокруг данного центра О: а) на 120° по часовой стрелке; б) на 75° против часовой стрелки; в) на 180°.
Учебное пособие для учащихся школ и классов с углубленным изучением математики «Геометрия, дополнительные главы к школьному учебнику 9 класса» Л.С. Атанасяна и др. является дополнением к основному учебнику «Геометрия, 7-9». Геометрическим преобразованиям посвящена одна из глав данного пособия, в которой движение дополняется и другими преобразованиями: центральным подобием, инверсией. Решается ряд интересных задач. Этот материал может заинтересовать учащихся в предпрофильной подготовке. Он расширяет их представления о движениях и подобиях, демонстрирует возможность применения метода геометрических преобразований при доказательстве теорем и решении задач.
Б.Г. Зив разработал дидактические материалы, содержащие самостоятельные и контрольные работы, математические диктанты и проверочные работы, рекомендованные преимущественно к учебнику Л.С. Атанасяна, Б.Ф. Бутузова и др. «Геометрия, 7-9», но могут быть использованы по утверждению автора и при работе по другим учебникам. В первом и втором вариантах самостоятельных работ предлагаются задачи, для успешного решения которых учащиеся должны применить знания на уровне минимальных программных требований. Третий и четвертый варианты состоят из задач среднего уровня сложности. Решение этих задач предусматривает умение распознавать понятия в стандартных ситуациях, применять знания в стандартных условиях или при небольших отклонениях от них. Задачи третьего и четвертого вариантов по сложности примерно соответствуют большинству основных задач учебника. Пятый и шестой варианты предназначены для наиболее подготовленных учащихся. При решении задач этих вариантов требуется уметь применять знания в усложненных ситуациях. По сложности эти задачи примерно соответствуют наиболее трудным из основных и дополнительных задач учебника.