В школьных учебниках геометрии прикладных задач немного, причем в большинстве своем они рассчитаны на среднего ученика и не учитывают различие стилей мышления учащихся. В нашей работе мы постарались увеличить число прикладных задач и сейчас рассмотрим метод обучения через задачи и как средство изучения и применения геометрических преобразований выбрали систему задач практического содержания. Такой подход позволяет укрепить межпредметные связи геометрии с другими дисциплинами, наполнить содержание предметного материала геометрии реальными образами.
1.1. Математические задачи, решаемые при помощи движений
Существенным элементом структуры познавательного педагогического процесса являются методы обучения. Под методом обучения будем понимать упорядоченный способ взаимосвязанной деятельности учителя и учащихся, направленный на достижение целей обучения [26]. Система методов обучения состоит из общих методов обучения, разработанных дидактикой, и из специальных методов обучения математике, отражающих основные методы познания, используемые в математике.
Для обучения учащихся 8-9 классов геометрическим преобразованиям могут быть использованы различные методы обучения. Наиболее целесообразно в классах, непосредственно предшествующих профильным, и профильных классах использовать метод обучения через задачи. Сущность данного метода состоит в том, что математические задачи выступают как средство обучения и позволяют организовать процесс обучения таким образом, чтобы каждому учащемуся, независимо от его интересов и задатков, дать возможность обучаться по своей индивидуальной траектории.
Задачи делятся на воспроизводящие, которые способствуют выработке и закреплению определенного навыка или умения, и творческие, помогающие выявить и развить способности детей. Именно творческие задачи помогают самовыразиться учащимся, реализовать свои индивидуальные задатки.
Целесообразность введения элементов профилирования в 8-9 классах с помощью системы прикладных задач обосновывается тем, что многие учащиеся с гуманитарными наклонностями, встретившись с задачей математического или физического содержания, не проявляют интереса к ее решению. В то же время, задача исторического, художественного или лингвистического содержания может стать для них более интересной и привлекательной. В этом случае учащимся будет легче установить связи между величинами задачи и выразить их на математическом языке.
В соответствии с мнением Я.И. Груденова, изучение математических положений можно подразделить на три этапа: введение, усвоение и закрепление. На этапе введения учащиеся знакомятся с формулировками и доказательствами предложений. При усвоении происходит запоминание материала, и школьники учатся применять математические предложения в простейших случаях. Закрепление сводится к повторению формулировок и отработке навыков применения к решению задач. Проверка знаний по теме может включаться как элемент в перечисленные этапы или выделяться отдельно.
На протяжении всех этапов изучения материала учащиеся решают математические задачи. На вводном этапе задачи играют роль подготовительных упражнений. При усвоении, закреплении и проверке теории они используются в качестве упражнений в применении знании и отработке практических навыков. Например, перед построением отрезков, симметричных относительно оси, учащимся необходимо восстановить в памяти определение построения точек, симметричных друг другу относительно прямой. Упражнение, предназначенное для учащихся, ориентированных на гуманитарные области знаний, может представлять собой тест на знание данного определения: «Чтобы построить две точки, симметричные друг другу относительно прямой, нужно...». Учащимся необходимо вписать в пропуски соответствующий текст.
В упражнениях для учащихся естественнонаучного (прикладного) направления требуется на основании данного определения сформулировать правило построения произвольных фигур, симметричных друг другу относительно прямой. При выполнении задания учащимися математического направления предлагается самостоятельно попытаться сформулировать новое определение по аналогии с симметрией относительно прямой, не используя дополнительные источники информации.
Включение в учебный процесс задач различного предметного содержания может оказать положительное влияние не только на формирование геометрических умений и навыков у всех учащихся класса, но и на развитие и поддержание интереса к предмету математики у учащихся, склонных к нематематическим видам деятельности.
Эффективность применения рассмотренного метода обучения через задачи во многом зависит от наличия комплекса средств обучения. Основным средством обучения является учебник, теоретический и практический материал которого, в большинстве своем, имеет два уровня сложности — обязательный и предназначенный для учащихся, интересующихся математикой.
Межпредметные связи изучаемого материала по геометрии в 8-9 классах целесообразно устанавливать с материалом тех предметных областей, которые соответствуют наиболее распространенным направлениям профильного обучения в старших классах. В дополнение к традиционному учебнику следует использовать дидактические материалы, которые содержат упражнения нескольких различных уровней сложности. К проверочным упражнениям по геометрии должны быть применены и требования дифференциации их по предметной направленности. Данные требования могут быть учтены при включении в контрольную работу хотя бы одной задачи прикладного характера, учитывающей различия стилей мышления школьников.
Кроме названных средств обучения при проведении дифференцированного обучения успешно могут быть использованы такие средства как справочная и дополнительная литература, разнообразные средства наглядности, компьютер и т.д.
Основной формой организации обучения геометрии является урок. Выясним, какую направленность он приобретает в условиях уровневой дифференциации с элементами профилирования. При планировании вида учебной работы учитель чаще всего руководствуется ее дидактической целью. Если целью работы является усвоение или проверка знаний и умений, то предпочтение следует отдать индивидуальной форме выполнения задания. Работа в группе более эффективна на этапах введения и закрепления материала. Чаще всего индивидуальная работа требует меньших затрат времени, чем групповая работа. Некоторые творческие задания удобнее выполнять группе учащихся. Это задания, предполагающие проведение теоретических и практических исследований, например лабораторные работы. Разнообразие организационных форм может обеспечиваться включением в учебный процесс игровой, художественной и других видов деятельности.
Одним из самых доступных путей повышения эффективности урока, активизации учащихся на уроке является соответствующая организация самостоятельной учебной работы. Она занимает исключительное место на уроке, так как ученик приобретает знания только в процессе личной самостоятельной деятельности. По мнению психологов (ПЯ. Гальперин, Н.А. Менчинская, Н.Ф. Талызина и др.), самостоятельная работа, в конечном счете, приводит школьника либо к получению совершенного нового, ранее не известного ему знания, либо к углублению и расширению сферы действий уже полученных знаний.
Использование того или иного вида самостоятельной работы зависит от содержания материала, этапа его изучения, уровня овладения материалом учащимися и других факторов. Основополагающим признаком применения видов самостоятельных работ при дифференцированном обучении может быть выбран характер познавательной деятельности.
Воспроизводящие самостоятельные работы по образцу необходимы для запоминания способов действий в конкретных ситуациях (признаков понятий, факторов и определений), формирование умений и навыков и их прочного закрепления. Так, решение задач на любой тип геометрических преобразований по данному образцу способствует закреплению определенных конкретных преобразований и их основных свойств. Строго говоря, деятельность учеников при выполнении работ этого типа не совсем самостоятельна, поскольку их самостоятельность ограничивается простым воспроизведением, повторением действий по образцу. Однако роль таких работ велика. Роль учителя состоит в том, чтобы для каждого ученика определить оптимальный объем работы.
При изучении геометрических преобразований на этапе закрепления вместе с учащимися 8-9 классов полезно рассмотреть ряд задач таких, как «На рисунке изображены два симметричных произвольных треугольника. Построить ось симметрии».
Для самостоятельного решения целесообразно предложить аналогичную задачу: «На рисунке изображены два симметричных прямоугольника. Построить ось симметрии данных прямоугольников».
Целесообразность решения заданий такого вида обусловлена тем, что навыки и умения по теме «Геометрические преобразования» отрабатываются на основных фигурах геометрии, рассматриваются наиболее распространенные положения фигур при преобразованиях. Отсюда следует необходимость решения этих заданий всеми учащимися класса, независимо от их интересов и будущих профессиональных намерений.
Самостоятельные работы реконструктивно-вариантного типа позволяют на основе полученных ранее знании и данной учителем общей идее найти самсчггоятельно-конкретные способы решения задач.