Смекни!
smekni.com

Изучение геометрии на уроках математики в 5-6 классах (стр. 7 из 14)

На основе изображения, на котором отмечены равные элементы, учащимся предлагается самостоятельно дать определение серединного перпендикуляра.

После все рассуждений вводится полное определение и свойство точек серединного перпендикуляра.

§37. Свойство биссектрисы угла

Учащимся с помощью рисунка предлагается ответить на вопросы, после которых они смогут сформулировать свойство биссектрисы.

Глава 5. Геометрические тела

§50. Прямоугольный параллелепипед

Даны две группы рисунков, которые учащимся предлагается классифицировать самостоятельно, а затем проверить себя:

1) Изображены тела, поверхность которых составлена из плоских фигур – многоугольников. Эти многоугольники называются гранями, а сами тела – многогранниками.

2) Тела ограничены не только плоскими поверхностями. Это круглые тела: цилиндр, шар и конус.

Далее аналогичная работа проводится другими группами рисунков:

1) Предметы имеют форму различных многогранников

2) Предметы имеют форму прямоугольного параллелепипеда.

Затем, вводятся основные элементы параллелепипеда.

§51. Развертка прямоугольного параллелепипеда

Рассматривается задача: на поверхности прозрачного куба находится паук, который пристально смотрит сквозь него на сидящую на другой грани куба муху. Всем понятно естественное для паука желание поймать муху, однако для этого ему нужно как можно скорее до нее добраться, а то ведь муха может и улететь. Другими словами, пауку необходимо двигаться к ней по кратчайшему маршруту. Изобразите простым карандашом путь, которым, по вашему мнению, должен двигаться паук. Подумайте, как проверить, является ли в действительности предложенный вами маршрут самым коротким.

§52. Объем прямоугольного параллелепипеда

Прямоугольный параллелепипед с измерениями 5 см, 6 см и 4 см, изготовленный из деревянного бруска, покрасили зеленой краской, а затем распилили на одинаковые кубики с ребром 1 см. Сколько среди этих кубиков окажется таких, у которых:

-Окрашено 3 грани?

-Окрашено только 2 грани?

-Окрашена только 1 грань?

-Не окрашено ни одной грани?

Чтобы ответить на последний вопрос, можно было найти число всех кубиков, а затем вычесть из него число кубиков, у которых окрашена хотя бы одна грань, т.е. сумму чисел, найденных в первых трех заданиях.

Рассматривается сводная таблица для длины, площади и объема. Затем вводится формула для вычисления объема.

Замечание: главная особенность рассмотренного учебника состоит в том, что учащиеся самостоятельно "добывают" все необходимые знания с помощью устных и практических заданий. Затем только сверяются с данными в учебнике.

3. С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин «Арифметика: 5 класс», «Арифметика: 6 класс», Арифметика 5 класс

Глава 2. Измерение величин

Прямая. Луч. Отрезок

В данном разделе порядок рассмотренных понятий построен от самого сложного (понятие плоскости) к самому простому (отрезок).

Понятие плоскости вводится на интуитивном, бытовом уровне: поверхность стола или поверхность воды на пруду (в безветренную погоду) может служить примером части плоскости.

Если согнуть лист бумаги, то линия сгиба будет частью прямой лини. Коротко – частью прямой.

Рассматривается несколько вариантов для обозначения прямой.

Сообщается, что через любые две точки можно провести только одну прямую, значит две различные прямые могут пересекаться только в одной точке. А что если прямые не пересекутся, как бы их не продолжали? Такие прямые называются параллельными.

Вводится значок для обозначения параллельных прямых. По рисунку объясняется как с помощью линейки и угольника провести параллельные прямые.

Если на прямой отметить точку, то она разделит прямую на две части (в отличие от учебника Н.Я. Виленкина понятия дополнительного луча не вводится), каждая из которых называется лучом. Сообщается об обозначениях луча.

Часть прямой, ограниченная точками называется отрезком.

Измерение отрезков

Понятия единицы измерения и единичного отрезка вводятся с помощью задачи: ученик 5 класса и его сестра - десятиклассница решили подсчитать число шагов от школы до дома. Получилось, что одно и тоже расстояние равно 300 шагам брата и 250 шагам сестры. Очевидно, что разные результаты получились из-за того, что сестра измеряла расстояние большими шагами, чем брат.

В таких случаях говорят, что были использованы различные единицы измерения длины. Отрезок, длина которого принята за единицу измерения, называют единичным отрезком.

На примере объясняется измерение с недостатком и с избытком.

Длину отрезка называют расстоянием между его концами.

Метрические единицы длины

Окружность и круг. Сфера и шар

Окружность - замкнутая линия, которую описывает ножка циркуля с карандашом. Центр окружности-т точка, в которую установили острие циркуля.

Радиус, хорда и диаметр определяются как отрезки, соединяющие различные точки окружности.

Круг - часть плоскости, находящаяся внутри окружности.

Сфера - все точки пространства, удаленные от данной точки на одно и тоже расстояние.

Шар - часть пространства, находящаяся внутри сферы.

Традиционная последовательность материала и его изложение.

Углы. Измерение углов

Понятие угла и его составляющих (вершина, стороны) вводится по рисунку на конкретном примере. Угол- часть плоскости, ограниченная лучами, выходящими из одной точки.

Понятие равных углов так же вводится по рисунку. Два угла называются равными, если они совмещаются наложением.

Далее рассматриваются все виды углов: развернутый, прямой, острый тупой.

Ели на прямой отметить точку, то образуется два луча, выходящих из одной точки. Эти точки тоже делят плоскость на две части, каждую из которых называют развернутым углом.

Прямой угол вводится на основе развернутого при помощи практических представлений: перегнем лист бумаги так, чтобы лучи совпали, и расправим лист. Тогда линия сгиба, разделит каждый из развернутых углов на два равных угла, каждый из которых называют прямым углом.

Сообщается, что углы измеряют и строят с помощью транспортира.

Острый и тупой угол вводятся традиционно, как угол, меньший и больший 90, соответственно.

Прямые, пересекающиеся под прямым углом, называют перпендикулярными. Вводится традиционный значок для обозначения перпендикулярных прямых.

Треугольник. Прямоугольник

Ученикам уже знакомы все виды углов, на основе этого вводятся виды треугольников. Кроме этого, вводится равнобедренный и равносторонний треугольники.

Все понятия вводятся традиционно и последовательно.

Прямоугольник

Вначале вводится стандартное определение прямоугольника: прямоугольник - четырехугольник, у которого все углы прямые. Определяются вершины и стороны прямоугольника.

Так как определение параллельных прямых было уже введено ранее, то сообщается, что прямоугольника противоположные стороны равны и параллельны.

Понятие квадрата вводится на основе прямоугольника, как частный случай: прямоугольник, у которого все стороны равны, называют квадратом.

Площадь прямоугольника. Единицы площади

Вводится понятие единичного квадрата и сообщается, что его площадь принимают за единицу измерения площадей, вводятся основные единицы измерения площадей.

Формула площади прямоугольника вводится по рисунку на конкретном примере.

Сообщается формула площади квадрата и дается объяснение названия второй степени числа, как квадрата числа.

Вводятся единицы измерения площадей земельных участков

Прямоугольный параллелепипед

Понятие прямоугольного параллелепипеда вводится на конкретных примерах: классная комната, коробка конфет, кирпич.

По рисунку вводятся все основные составляющие параллелепипеда.

Понятие куба вводится, как частный случай прямоугольного параллелепипеда, у которого все ребра равны.

На рисунке изображена коробка, имеющая форму прямоугольного параллелепипеда, если ее разрезать по вертикальным ребрам и развернуть, то получится развертка прямоугольно параллелепипеда, тоже изображена на рисунке.

Объем прямоугольного параллелепипеда. Единицы объема

Все понятия, связанные с данным пунктам вводятся аналогично и в той же последовательности, как и площадь прямоугольника.

Арифметика 6 класс

Глава 5

Длина отрезка

Ранее уже вводилось понятие длины отрезка, но только в том случае, когда его длина выражалась рациональным числом. В этом пункте дано понятие длины произвольного отрезка, которая может выражаться как рациональным, так и иррациональным числом.

Итог: произвольный отрезок АВ имеет длину а – положительное число. Верно и обратное утверждение: если дано положительное число а, то можно указать отрезок АВ, длина которого равна этому числу.

Длина окружности. Площадь круга

Вводится число пи и обосновывается причина использования его приближенного значения, постоянное число, равное отношению длины окружности к длине ее диаметра.

Формула длины окружности получается на основе определения числа пи, а формула площади круга приводится без доказательства.

Далее рассматривается пример на использование полученных формул.

Координатная ось

Ранее вводилось понятие координатной оси. Но там рассматривались только рациональные точки, т.е. точки, имеющие рациональные координаты х, и ось была «дырявая» - без иррациональных точек. Однако координата х произвольной точки координатной оси есть, вообще говоря, действительное число, т.е. оно может быть рациональным или иррациональным. Этот вопрос и был выяснен на основании общего понятия длины отрезка, введенного ранее. Теперь координатная ось перестала быть «дырявой» - каждой ее точке соответствует действительное число (взаимно однозначное соответствие между точками оси х и действительными числами).