Смекни!
smekni.com

Измерения геометрических величин в курсе геометрии 7-9 классов (стр. 6 из 14)

Рис. 14

4.3 Инструменты, с помощью которых можно измерить градусную меру угла

В третью группу измерительных приборов отнесем те инструменты, с помощью которых можно измерить градусную меру угла – угломеры.

В некоторых современных учебниках геометрии упоминается о таком приборе, как малка (рис. 15). Рассмотрим этот инструмент подробнее.

Малки применяются при измерении и переносе углов с одной детали на другую, а также для проверки углов на изготовленных предметах. Малки бывают различных конструкций. Простая малка состоит из двух подвижных линеек, соединенных с одного конца шарнирным винтом. Такая малка служит для одновременного измерения, переноса и проверки только одного угла.

Рис. 15

Линейки малки устанавливаются под углом, заданным на рабочем чертеже детали, и закрепляются винтом. После этого малка накладывается на проверяемую деталь. В столярном производстве простые малки употребляются при изготовлении деревянных деталей с заданным углом и при разметке материала. Универсальная малка служит для одновременного переноса и проверки двух или трех углов.

Также при изучении темы «Измерение углов» учащиеся и учитель используют такой инструмент как транспортир (рис. 5). Соответственно различают классный и ученический транспортиры.

Классный транспортир используется для измерения и построения на классной доске углов до 180 градусов. Ценой деления такого транспортира является 1 градус. Ученический транспортир устроен также как и классный.

Для построения на местности углов в 45, 90, 135 градусов и других служат экеры (рис. 16). Они бывают различной конструкции: крестообразные, в виде прямоугольного треугольника, квадратной доски, цилиндрические и другие. Экеры применяются в практике не только для построения углов, но и для проведения параллельных и взаимно перпендикулярных линий, для проведения высот в треугольниках, при съемке планов земельных участков и др.

Рис. 16

Еще одним инструментом, упоминавшимся в школьных учебниках является астролябия (рис. 17). Она состоит из лимба с

градусным делением.

В центре лимба прикреплена подвижная алидада

с диоптрами на концах для визирования. Лимб

с алидадой надевается на штырь штатива. Для

ориентирования астролябия снабжается компасом

или буссолью. При помощи астролябии измеряются

и строятся углы в горизонтальной плоскости,

проводятся параллельные и перпендикулярные линии. Усовершенствованные астролябии на конце алидады имеют верньер (круговой нониус) для отсчета долей градуса.

Учащимся могут быть предложены следующие задачи:

- малкой измерить и перенести данный угол на деталь.

- с помощью классного транспортира измерить изображенные на доске углы различной величины.

- экером построить угол на местности в 45°, 90°, 135° и 180o.


Рис. 17

4.4 Инструменты для измерения площадей

В четвертую группу приборов можно отнести приборы, предназначенные для измерения площадей. Заметим, что непосредственное измерение площадей неудобно, поэтому для их нахождения удобно пользоваться известными математическими теоремами и формулами. Также можно использовать такой прибор как палетка (рис. 18). Это прозрачная пластинка с нанесенной на нее сеткой линий, предназначенная для вычисления площадей на планах и картах, для отсчета координат и т.д.

Ученикам могут быть предложены разные виды задач на:

- измерение с помощью палетки площадей плоских фигур, изображенных на бумаге;

- измерение площади поверхности многогранника и др.

Рис. 18


Мы рассмотрели измерительные инструменты, с которыми полезно знакомить в школе. Изучение некоторых из них является обязательным. Это такие инструменты как линейка, угольник, транспортир, циркуль. Без умения использовать их невозможно изучение геометрии, так как измерения являются одной из основных линий геометрии. И именно при изучении этой линии у школьников появляется возможность познакомится с разнообразными методами геометрии, например, метод площадей, знание которого важно при изучении других геометрических фактов. Вычислительные и измерительные задания формируют у учащихся навыки, необходимые в их будущей трудовой деятельности. Рассмотрение таких измерительных инструментов как астролябия, малка, штангенциркуль и др. дает возможность активизировать работу учащихся по формированию вычислительных навыков, навыков измерений и работы с единицами измерений [29].


§ 5. Различные направления использования измерений геометрических величин при обучении геометрии

Роль измерений в жизни человека невозможно преувеличить. Рассмотрим, какова же роль измерений в курсе геометрии.

Немало слов было сказано о прикладном значении геометрии и роли измерений в ней, как самостоятельного раздела для изучения. Также измерения могут быть использованы и как средство обучения.

5.1 Типология задач на измерения

Измерения могут быть использованы как при изучении нового материала, решении задач, доказательстве теорем, так и при закреплении материала. Но прежде чем перейти к рассмотрению способов применения измерений в том или ином случае, рассмотрим виды заданий на измерения:

- задания на непосредственные измерения;

- задания на косвенные измерения;

- задания на косвенные и непосредственные измерения;

- задания на измерения с помощью информационных технологий.

В результате проведенного сравнительного анализа школьных учебников по геометрии мы можем сделать вывод: в школьном курсе геометрии основное внимание уделяется вычислению геометрических величин: длин отрезков, градусной и радианной мер углов, площадей, объемов и т.п., – то есть опосредованному измерению. Но нельзя проигнорировать непосредственные измерения. Ведь геометрия возникла в глубокой древности в связи с необходимостью измерять, расстояния, площади земельных участков, возводить постройки и т.п. И в настоящее время любой человек в своей жизни сталкивается с необходимостью что-либо измерять.


5.1.1 Задачи на непосредственные измерения

Рассмотрим задачи на непосредственные измерения. К таким задачам относятся задачи, при решении которых используются только измерительные инструменты: линейка, транспортир и др.

- Найти длину отрезков АВ, CD, EF, GH (рис. 19).

Рис. 19

При этом учащиеся проявляют свои знания, умения пользоваться измерительными инструментами.

- Найти периметр многоугольника АВCDEF (рис. 20).

Рис. 20

- Найти градусные меры углов, указанных на рисунке 21.

Рис. 21

При решении подобных задач ученикам могут быть заданы вопросы:

- Что нам нужно измерить? (длину отрезка, градусную меру угла)

- Что мы знаем о длине отрезка, о градусной мере угла? (длина отрезка, градусная мера угла выражается некоторым положительным числом)

- Каким измерительным инструментом удобно пользоваться? (линейкой, транспортиром)

Также к задачам этого типа можно отнести и измерение площади плоской фигуры с помощью палетки. Важно отметить, что при непосредственных измерениях мы сталкиваемся с понятием погрешности измерения. Поэтому ученики должны понимать, что результаты, полученные при их измерениях неточны. Следующим типом задач, могут быть задачи, в которых использование измерительных инструментов недостаточно. Кроме них необходимо использование дополнительных средств.

Например, найти длину окружности (рис. 22).

Рис. 22 расстояния на местности

При решении подобной задачи возможно использование подручных средств, например, нити. С помощью нити и линейки можно измерить длину окружности.

Также могут быть решены задачи такого типа как измерение.

Например, измерить длину коридора в школе. Это можно сделать с помощью рулетки, мерной ленты, шагами или на глаз.

Измерения расстояний на местности могут быть выполнены непосредственно различными инструментами. В тех случаях, когда достаточны менее точные результаты измерения, могут быть применены измерения расстояний шагами. Рассмотрим, примеры таких измерений. Для шагомерного определения расстояний каждый ученик должен знать среднюю длину своего шага. Длина шага находится путем двух, трехкратного измерения шагами одного и того же расстояния, измеренного рулеткой. Делением расстояния, измеренного рулеткой, на среднее арифметическое числа шагов находится средняя длина шага. Чтобы найти длину шага точнее, можно измерить несколько расстояний. Для удобства может быть заполнена таблица:

Таблица 1

Расстояние, измеренное рулеткой, м Число сделанных шагов Длина шага, м
Расстояние 1

Приведем пример заполнения такой таблицы (таблица 2).

Среднее арифметическое числа шагов:

Таким образом, длина шага:

Таблица 2

Расстояние, измеренное рулеткой, м Число сделанных шагов Длина шага, м
Расстояние 1 6 10 0,62
9
10

Развитие глазомера учащихся также имеет большое практическое значение. Привитие навыков в определении расстояний на глаз в различных условиях должно осуществляться в школе систематически. Только постоянной тренировкой в развитии глазомера можно добиться более или менее удовлетворительных результатов.