Несомненно, при организации практической деятельности учеников нельзя забывать об основных принципах обучения. В методической литературе по математике общепризнанной является следующая система дидактических принципов [14]:
1. Принцип воспитания в обучении математике. Практическая деятельность, как уже было сказано, способствует достижению воспитательных целей. Воспитание мировоззрения и морали способствует формированию характера каждого школьника. Чтобы учащийся мог действовать в соответствии с принципами мировоззрения и морали, он должен сформировать у себя такие черты характера, как принципиальность, сила воли, скромность, честность по отношению к самому себе и другим людям. Мировоззрение, базирующееся на научном знании и практическом жизненном опыте, связывает в единое целое эти свойства личности. Отсюда вытекают возможность и необходимость передачи всем людям знаний о закономерностях развития природы, общества и человеческого мышления, чтобы они могли сознательно осуществлять деятельность, направленную на построение общества.
2. Принцип научности в обучении математике. Одним из аспектов реализации принципа научности в обучении является выработка у учащихся учебно-исследовательских навыков и умений, что невозможно без практической деятельности школьников.
3. Принцип сознательности, активности и самостоятельности в обучении математике. Данный принцип заключается в целенаправленном активном восприятии изучаемых явлений, их осмыслении, творческой переработке и применении. Где же еще, как ни на практике у ученика есть возможность проявить свои знания, попробовать свои силы в решении задач.
4. Принцип доступности в обучении математике. Принцип доступности в обучении вытекает из требований учета возрастных особенностей учащихся. Он лежит в основе составления учебных планов и программ. Принцип доступности требует, чтобы объем и содержание учебного материала были по силам учащимся, соответствовали уровню их умственного развития и имеющемуся запасу знаний, умений и навыков. Ведь если перед учеником стоит задача, которую он не может решить из-за недостатка каких-либо знаний, то вскоре у него пропадает интерес к решению этой задачи и вообще к изучаемой теме и предмету.
5. Принцип наглядности в обучении математике. В обучении геометрии этот принцип очень важен, так как в геометрии присутствует множество фигур, теорем и др., которые требуют демонстрации для прочного усвоения их свойств и формулировок. Например, при изучении многогранников демонстрация и самостоятельное моделирование этих фигур способствуют развитию пространственного мышления, понимаю свойств моделируемого объекта.
6. Принцип индивидуального подхода к учащимся в обучении математике. Соблюдение этого принципа эффективно при использовании практических заданий на уроках геометрии. У учителя появляется возможность осуществить индивидуальный и дифференцированный подход в обучении. В зависимости от качества и скорости выполнения заданий преподаватель уделяет время каждому школьнику отдельно: объясняет процесс решения задачи, помогает в решении возникших проблем, обеспечивает дополнительными заданиями, более сложными или легкими, в зависимости от того «сильный» ученик или «слабый».
Практическая деятельность школьника обеспечивает вовлечение его в учебный процесс, достижение целей обучения математики и соблюдение основных дидактических принципов обучения. В обучении геометрии это очень важно. Где, если ни на геометрии учащиеся встречаются с формами, которые их окружают: квадраты, окружности, параллелепипеды и др. И именно на геометрии они учатся измерять, вычислять геометрические величины: площади, объемы и др. Поэтому очень важно чтобы весь процесс обучения геометрии сопровождался практической деятельностью учеников.
§2. Этапы изучения измерений геометрических величин в школьном курсе математики
Показ учащимся приложения математики к решению жизненно важных задач способствует повышению у них интереса к обучению, возбуждает творческую активность и самостоятельность в работе.
Одним из важных звеньев процесса обучения в школе является приобретение учащимися знаний, умений и навыков в измерении геометрических величин. В содержании Стандарта основного общего образования по математике [28] уделяется время измерению геометрических величин. А именно, туда относят следующие понятия: длина отрезка, длина ломаной, периметр многоугольника, расстояние от точки до прямой, расстояние между параллельными прямыми, длина окружности, число π; длина дуги, величина угла, градусная мера угла, соответствие между величиной угла и длиной дуги окружности, понятие о площади плоских фигур, площадь параллелограмма, треугольника и трапеции (основные формулы), формулы, выражающие площадь треугольника: через две стороны и угол между ними, через периметр и радиус вписанной окружности, формула Герона, площадь четырехугольника, площадь круга и площадь сектора, связь между площадями подобных фигур, объем тела, формулы объема прямоугольного параллелепипеда, куба, шара, цилиндра и конуса. Идейно-содержательная линия «Измерение геометрических величин» входит в состав геометрической линии школьного курса математики и изучается с 5 по 11 класс. В объяснительной записке и в тексте Программы [22] по математике говорится, что учащиеся в процессе обучения геометрии должны:
уметь:
- распознавать на чертежах и моделях пространственные формы: соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.
Рассмотрим, какое место отводят авторы современных учебников по геометрии измерениям и измерительным приборам в своих книгах, и какие этапы изучения измерений в школе можно выделить.
Этапы изучения измерений в школе: пропедевтический курс (1-6 классы), основная школа (7-9 классы), старшая школа (10-11 классы).
В пропедевтическом курсе, который охватывает начальную школу и младшие классы среднего звена, учащиеся знакомятся с различными геометрическими фигурами, приобретают начальные навыки изображения этих фигур с помощью линейки, циркуля, угольника. С процессом измерения учащиеся знакомятся на наглядно-интуитивном уровне. Школьники приобретают опыт непосредственного измерения, нахождения и сравнения длины отрезка, площадей плоских фигур, а также знакомятся с различными единицами измерения и переводом из одних единиц измерения в другие. На этом же этапе учащимся приводятся формулы для косвенного измерения периметра многоугольника, площадей плоских фигур (квадрата, прямоугольника).
На втором этапе изучается большое число теоретических фактов, с помощью которых проводится косвенное измерение геометрических величин. Переходя к этому этапу необходимо мотивировать переход от непосредственного к косвенному измерению. Для этого полезно вспомнить об инструментах, с помощью которых измеряются длины отрезков (линейка), углы (транспортир) и др. Также на этом этапе изучается большинство теорем, позволяющих производить косвенные измерения геометрических величин (длин отрезков, углов, площадей).
В старшей школе от измерений длин отрезков, углов, площадей переходят к измерению объемов геометрических тел, применяя при этом знания начал математического анализа.
Для того, чтобы ответить на вопрос о месте измерений в курсе геометрии, проведем сравнительный анализ учебников по геометрии, используемых в школе.
§3. Сравнительный анализ учебных пособий по геометрии для 7 – 9 классов
Проведем сравнительный анализ как теоретического материала, так и задачного. Анализ содержания предлагаемого для изучения материала проведем по четырем вопросам:
- понятие измерения геометрической величины;
- измерение геометрических величин;
- вычисление геометрических величин;
- применение измерений геометрических величин на практике.
Выбраны именно такие аспекты, так как именно они охватывают всю теорию измерений. Первый аспект – понятие измерения геометрической величины, подразумевает ответ на вопрос о том, дается ли в учебнике определение понятия длины отрезка, градусной или радианной меры угла, понятия площади плоской фигуры. Измерение и вычисление геометрических величин подразумевают непосредственное (прямое) и опосредованное (косвенное) измерение длин отрезков, углов, площадей соответственно. Непосредственное измерение связано с применением измерительных приборов, а косвенное – с использованием формул. Последний аспект охватывает область применения измерений геометрических величин на практике, то есть использование измерений при решении практико-ориентированных задач, доказательстве теорем.