Основные способы работы учителей с одаренными | Основные проблемы, испытываемые ими при такой работе |
- факультативы - кружки - подготовка к олимпиадам - проведение конкурсов | - нет психологической помощи - нет специальной методической литературы - отсутствие дидактических материалов |
Помимо анкетирования педагогов, были проведены, также, беседы с родителями способных учащихся. Результаты бесед показали, что основные проблемы родителей одаренных детей заключаются в следующем:
- Отказ признавать одаренность ребенка;
- Родительская гиперответственность за талант ребенка;
- Незнание как строить отношения с непонятными проблемами;
- Отсутствие финансовых возможностей дать ребенку образование;
- Незнание, куда обратиться за помощью.
Выводы
На основе вышеизложенного можно сделать вывод о том, что в исследованиях развивающего обучения рассматриваются проблемы проектирования развивающих целей математического образования, роль задач в их достижении, дифференциации, индивидуализации и исследовательского обучения математике, обучения одаренных детей в специализированных классах и школах, по специальным программам и технологиям.
Однако в настоящее время они не образуют целостной системы, которая составляла бы часть методической системы и, в частности, системы развития одаренных способностей учащихся в процессе обучения математике в общеобразовательной школе, чему свидетельствуют приведенные выше результаты анкетирования педагогов, собственные наблюдения, изучение литературы по данной теме.
Таким образом, существует множество неразрешенных проблем, связанных с развитием одаренных детей в общеобразовательной школе.
§ 5. Анализ учебно-методического обеспечения процесса обучения математике с точки зрения выявления его потенциала для развития одарённых учащихся
Проанализируем учебные программы и учебники по математике для 5-6 классов с целью выявления в них акцента на развитие именно одаренных учащихся. Учебная программа, как основной документ общеобразовательного учреждения, менялась в процессе развития системы образования. Так, в 1923 г. стержнем школьных программ было изучение трудовой деятельности людей; в 50-е годы советской школы стали говорить о новом этапе ее развития на основе всеобщего политехнического обучения, осуществляющего связь между теорией и практикой, между умственным и физическим трудом в процессе обучения и воспитания. При переходе на предметную систему преподавания в советской школе тесным образом проявляется связь с трудовой жизнью. С уходом из школы исследовательского метода, как основного метода учения, утрачены и некоторые полезные аспекты жизненного, экономического воспитания школьников, все реже и реже рассматриваются жизненные задачи, на примере которых учащиеся упражнялись бы в применении математических знаний к решению несложных прикладных задач. Одним из основных недостатков этих программ было отсутствие планирования развития ученика, выявления его истинных способностей и необходимости работы с ним на его уровне [21].
Характерная особенность программы 1965-68гг. – это создание существенно новой для нашей школы формы обучения – факультативных занятий по выбору учащихся, которые призваны обеспечить индивидуальное развитие учащихся, основательную подготовку в вуз; развитие системы школ и классов с углубленным изучениемотдельных предметов, цель которых была обеспечить приход в науку талантливых молодых людей. В 1980 г. была принята программа, усиливающая прикладное содержание школьного курса математики, в 1985 г. новая учебная программа, усиливающая практическую направленность обучения.
Началом современного этапа реформы математического образования в нашей стране является 1989 г., когда Госкомитетом СССР по народному образованию была разработана в русле перестройки школы новая Концепция общего среднего образования [20]. В 1993 г. был утвержден базисный учебный план и разработан проект «Стандарта среднего математического образования», в котором требования к математической подготовке учащихся задаются в двух уровнях – «уровне возможностей» и «уровне обязательной подготовки» в виде типовых заданий и процедур оценивания их выполнения учащимися. Как отмечает Т. А. Иванова [26], требования этого стандарта частично отражают и гуманитарный потенциал школьного курса математики, но важнейшие его аспекты не являются результатами обязательного усвоения, содержание которого определяется лишь умением решать типовые задачи.
Опубликованный в 1996 г. проект нового Стандарта, ставший победителем на Всероссийском конкурсе [21], стал шагом вперед по сравнению с предыдущим. В нем более полно раскрываются гуманитарные аспекты образовательной области «Математика» и в соответствии с ними сформулированы целиобучения математике такие, как «интеллектуальное развитие обучающихся, формирование качеств мышления, характерных для математической деятельности и необходимых человеку для полноценного функционирования в обществе, формирование представлений об идеях и методах математики как части общечеловеческой культуры, как форме описания и методепознания действительности, понимание значимости математики для общественного прогресса» [31].
В новой Концепции математического образования для 12-летней школы [46] отмечается гуманитарная направленность общеобразовательного курса математики, обучение математике ориентировано не столько на собственно математическое образование, в узком смысле слова, сколько на формирование личности с помощью математики. Целью учебного предмета «Математика» провозглашается формирование и развитие мышления, способности кабстрагированию; формирование важнейших качеств личности (логическое(дедуктивное) мышление, алгоритмическое мышление, многие качества мышления – такие, как сила и гибкость, конструктивность и критичность и т. д.). Вкачестве основополагающего принципа концепции математического образования на первый план выдвинут принцип приоритета развивающей функции в обучении математике.
Действующая программа по математике для общеобразовательных учреждений в разделе «Требования к математической подготовке учащихся» также задает два уровня: уровень возможностей и уровень обязательной подготовки предусматривает возможность изучения содержания курса с различной степенью полноты. Одной из целей обучения в школе программа ставит интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для продуктивной жизни в обществе [46, с.8-10].
Следует заметить, что ни в одной программе нет специального акцента на развитие именно одаренных (способных) детей.
Проанализируем учебники математики для 5-6 классов общеобразовательных школ на содержание в них материала, подходящего для развития одаренных учащихся.
В настоящее время в большинстве средних общеобразовательных школ используется учебник математики для 5-6-х классов под редакцией Н. Я. Виленкина. Учебники и учебные пособия под редакцией Н. Я. Виленкина [37, 38] имеют целью развитие наглядно-образного и абстрактно-логического мышления. В учебниках имеются задания, предусмотренные стандартом образования, достаточное количество упражнений, необходимых для усвоения детьми изучаемого материала. В разделе «Упражнения для повторения» выделена рубрика «Развивайте свои способности», обозначенная славянской буквой «мыслете» (задачи повышенной трудности, игры и упражнения, специально рассчитанные на развитие мышления, памяти, внимания). Они позволяют выявить учеников с недостаточно сформированным или неустойчивым вниманием, неразвитой оперативной памятью и позволяют развивать сообразительность, умение находить закономерности, развивать пространственное воображение. Но количество такого материала мало для ребят одаренных, увлеченных математикой, хотя и достаточно для учащихся, не обладающих высокими математическими способностями. Теоретический материал, способствующий умению говорить правильно, отмеченный под рубрикой Г - «глаголь» позволяет развивать и обогащать лексикон учащихся. Наличие в учебнике достаточно большого количества исторического материала, причем изложенного в очень доступной форме и иллюстрированного картинками, позволяет повышать познавательный интерес учащихся, развивать воображение, память, мышление.
Учебник коллектива авторов: Г. В. Дорофеева, С. Б. Суворовой и др. под ред. Г. В. Дорофеева (в комплекте с рабочими тетрадями, дидактическими материалами с разноуровневыми упражнениями, задачами на смекалку и книгой для учителя) [35, 36, 34, 33] уделяет внимание формированию вычислительной культуры, делает акцент на обучение приемам прикидки и оценки результатов действий и логическим приемам решения текстовых задач. Изменен подход к изложению геометрического материала - представлена наглядно-деятельностная геометрия, направленная на расширение геометрического кругозора учащихся. Включен новый для российской школы материал - элементы математической статистики, комбинаторики и теории вероятностей. Каждый раздел завершается рассмотрением методов решения задач из этого раздела и двухуровневой системой упражнений. В конце каждой главы в пункте «Для тех, кому интересно» предлагается необязательный материал, углубляющий или расширяющий знания учащихся проявляющих интерес к математике. В конце каждой главы предусмотрены вопросы и задачи для повторения. По печатным тетрадям Г. В. Дорофеева учащиеся знакомятся с большинством изучаемых в курсе математики 5-6 классов отношений и свойств, некоторыми сведениями из системного курса математики, овладевают основными логическими операциями сравнения, поиска закономерностей, классификации и т. д. Изложение материала этих учебников по математике характеризуется краткостью, сжатостью, мелкой рубрикацией, последовательностью расположения и как следствие - связью с изученным раннее учебным материалом. Это способствует удобному проведению различных видов обобщений.