Смекни!
smekni.com

Експериментальне дослідження математичного виховання дітей дошкільного віку (стр. 2 из 7)

У цілому ж праці Ф.Н. Блехер, незважаючи на ряд помилкових поглядів, мали позитивний вплив на розвиток методики навчання лічби дітей. Багато методичних вказівок щодо організації дидактичних ігор та вправ не втратили свого значення й тепер. У 40–50-х роках почалося експериментальне вивчення особливостей формування у дітей умінь та навичок в лічильній діяльності. Було проведено психологічні дослідження з цієї проблеми І.А. Френкелем, Л.А. Яблоковим, Є.І. Корзаковою, Г.С. Костюком. Ними обґрунтовано положення про те, що необхідно формувати у дітей уміння розпізнавати окремі елементи множин, а потім переходити до узагальнення про залежність сприйняття множин від засобу просторового розміщення елементів, про засвоєння дітьми числівників і ступенів оволодіння лічильними операціями.

Особливе значення мали дослідження Г.С. Костюка. Його цікавило, за яких умов і як виникає в дітей перше усвідомлення ними кількісних відношень речей, як здійснюється перехід від сприймання групи предметів до поняття про їх число. Об'єктом дослідження були діти віком від двох до чотирьох з половиною років. Вони виконували ігрові завдання, що потребувало усвідомлення кількості реальних і зображуваних об'єктів (у межах від одного до п'яти). Вчений зробив висновок про те, що поняття числа виникає в дитини через пізнання нею кількісних відношень речей. Дитина абстрагує число від цих речей, проте абстрагування є для неї активним процесом. Воно передбачає вироблення в умовах мовного спілкування з дорослими нових засобів дій (спочатку практичних, потім розумових) з об'єктами.

Поняття числа за засобом походження – продукт аналізу і синтезу, абстрагування й узагальнення дій дитини з об'єктами (звідси його операторний характер), а за своїм змістом – знання їх кількісних відношень.

У працях Н.А. Менчинської найповніше розглянуті питання формування поняття про число у дітей. Розглянуто співвідношення сприйняття множин і рахунку на різних етапах оволодіння числом.

Одночасно з експериментальним вивченням відбувається орієнтування на узагальнення педагогічного досвіду роботи дитячих садків. Янгольська М.Л. допомагає молодим педагогам організувати роботу з розвитку початкових математичних уявлень у дітей дошкільного віку.

В ній вміщено різноманітні дидактичні ігри та вправи з математичним змістом на закріплення лічби і знань про число, розміри, масу, форму, простір та вимірювання. Ігри систематизовано відповідно до віку дітей. До багатьох ігор подано креслення та малюнки дидактичного матеріалу. Пропонуються ігри рухливі, настільні, головоломні та інші.

Пигулевська З.В. пропонує серію конспектів занять з лічби, дає опис деяких наочних посібників та дидактичних ігор, педагогічні висновки автора грунтуються на спостереженнях за великою кількістю дітей.

Розглядаються особливості дітей дошкільного віку, умови свідомого і надійного засвоєння, деякі принципи навчання лічби дошкільників (наочність та активність), основні шляхи цієї роботи, орієнтувальні показники в засвоєнні знань. Це була перша спроба створити систему в навчанні початків математики. Михайлова Ф.А. і Бакст Н.Г. розкривають зміст і прийоми роботи з дітьми у різних вікових групах.

Рекомендується до вивчення лічби сформувати у дітей уявлення про множини. Надалі велика увага приділяється складу чисел з одиниць і двох менших чисел, відношення між складними числами, що розглядається як передумова засвоєння дій складання і віднімання.

Характеризуючи рівень методики формування математичних уявлень у ці роки, слід зазначити, що недостатність фундаментальних досліджень у цій галузі приводила до відмови від активного втручання у розвиток дітей. Розробляючи методику, педагоги вказували лише на необхідність створення сприятливих умов, які забезпечують саморозвиток дітей. У роботі: з дітьми надавалась перевага дидактичним іграм та індивідуальним заняттям. Практика показала, що таке навчання не досить ефективне для дітей і не забезпечує їхнього розвитку.

Г.М. Леушина провела глибоке дослідження на підставі вивчення математичних уявлень та лічильних операцій у дітей дошкільного віку, проаналізувала різні точки зору, підходи І концепції формування математичних уявлень у вітчизняній та, світовій науці і практиці виховання дошкільників, критично оцінила попередні напрями і розробила новий підхід до навчання лічби в дитячому садку.На основі принципів і методів, запропонованих Г.М. Леушиною, розвиток елементарних математичних уявлень у дошкільників проводиться й зараз.

Спочатку діти починають порівнювати множини. Таке порівняння дає змогу дитині зробити висновок, наприклад, про те, що їй дали менше цукерок, ніж її братові. Малюк не може сам розповісти, як він про це дізнався, але спостереження за його поведінкою показують, що таке порівняння він робить, зіставляючи один предмет з іншим, немовби порівнюючи їх попарно. «Наочне зіставлення елементів однієї множини з елементами іншої дає змогу дитині зробити висновок про рівність або нерівність множин».

Концепція формування елементарних математичних уявлень у дітей, розроблена Г.М. Леушиною, служить джерелом для багатьох сучасних досліджень, а дидактична система пройшла випробування часом, показала свою ефективність в умовах громадського дошкільного виховання, успішно функціонує вже декілька, десятків років.

У 60–70-ті роки в Україні та інших республіках тодішнього Союзу було проведено ряд досліджень з різних проблем методики формування елементарних математичних уявлень (М.М. Макляк, О.К. Грибанова, В.К. Котирло, К.В. Назаренко, З.Є. Лебедєва), що значно доповнили методику навчання дошкільників елементарної математики. Під час досліджень виявлено, що основою математичного розвитку дітей є порівняння різних конкретних (перервних і неперервних) величин. Поняття «перервна величина» відповідає потужності множини, елементи якої легко полічити. У дослідженнях Г.М. Леушиної в основному увага приділялась формуванню поняття про число на підставі перервних (дискретних) величин – множин предметів, іграшок, картинок, звуків тощо.

Однак ознайомлення дітей з числом тільки на основі порівняння конкретних множин дає неповне уявлення про число. Дослідження П.Я. Гальперіна та Л.С. Георгієва показали, що число дітьми має сприйматися насамперед як результат вимірювання, як відношення вимірюваної величини до обраної міри. Внаслідок такого навчання діти раніше, ніж при традиційній системі, ознайомлюються з числом, яке дістають не тільки при перелічуванні, а й при вимірюванні; з числом не тільки як характеристикою кількості окремих предметів, що становлять перелічувану групу, а й як показником відношення. З самого початку навчання до свідомості дітей доводиться той факт, що. число залежить від обраної міри, що міра – складова частина вимірюваної величини, але зовсім не тотожна поняттю одиниці як окремості. Сучасні дослідження дали змогу включити до програми виховання у дитячому садку навчання дітей вимірювання.

Дослідження П.М. Ерднієва було спрямоване на вивчення складної методики навчання обчислювальної діяльності в дитячому садку і школі. У прийнятій дитячим садком і школою методиці розв'язування арифметичних задач спочатку пропонувались задачі на додавання, а потім – віднімання. П.М. Ерднієв запропонував новий метод – одночасного вивчення цих дій, тобто на одному занятті дітей ознайомлювали із задачами на додавання й віднімання. Крім того, дослідження показали, що з найперших кроків дітей доцільно ознайомлювати з необхідністю інколи робити об'єднання або перестановку доданків, підкреслюючи при цьому, що від зміни місць доданків результат (сума) не змінюється. Така підготовча робота до вивчення переставного та сполучного законів додавання у дитячому садку дає змогу формувати в дітей усвідомлене ставлення до арифметичних дій, озброювати їх узагальненими способами виконання різних видів математичної діяльності. У 60–70-ті роки були проведені дослідження з багатьох інших проблем математичного розвитку дошкільників. Це дало змогу визначити обсяг і зміст навчання математики в дитячому садку. До програми з математики було введено ознайомлення дітей з розмірами та формою предметів, просторовими і часовими відношеннями, способами вимірювання неперервних величин (лінійне та об'ємне вимірювання), відношення частинного і цілого тощо.

Психолого-педагогічні дослідження М.М. Подд’якова, В.В. Давидова, Л.В. Занкова, Л.А. Венгера свідчать про значно більші, ніж вважалося досі, розумові можливості дітей у процесі навчання, в тому числі в процесі навчання математики. Так, дослідження, проведені Л.А. Венгером та Т.В. Тарунтаєвою, були спрямовані на з'ясування рівня математичних знань, здобутих в результаті навчання на заняттях і поза ними. Дослідження показали, що у дітей у віці два – три роки починають формуватися перші уявлення про кількість, вони вже вміють виділити одиниці з множини, порівнювати предмети за кількістю навіть без будь-якого цілеспрямованого навчання. До чотирьох-п'яти років вони спонтанно оволодіють деякими лічильними операціями не лише наочно. Проте, дітям молодшого віку завдання, що потребували застосування міри, без спеціального навчання виявились недоступними. Діти навіть старшого дошкільного віку стихійно вимірюванням не оволодівали. Процес оволодіння мірою як засобом зіставлення величин можна і слід організувати у дошкільному віці і він ефективний для загального розвитку.

У сучасних дослідженнях психологів і педагогів (І.С. Костюка, М.М. Поддьякова, О.Я. Савченко, М.В. Богдановича, Л.П. Кочіної, Н.І. Непомнящої) дедалі більше підкреслюється необхідність навчання дітей узагальнених прийомів і способів діяльності. Таким чином, протягом останніх років методика, поповнилась теоретичними дослідженнями і різними конкретними рекомендаціями, що значно підвищило ефект навчання.