В XVIII в., т.е. спустя почти двести лет, французский математик А.К. Клеро, следуя за педагогической идеей Валлиса, уделил большое внимание историческому методу в процессе обучения математике. Он считал очень продуктивной методику, которая учит искать и делать открытия, потому что при таком изложении математических утверждений указывается, каким образом люди пришли к открытию.
В середине XIX столетия англичанин В.Г. Спенсер опубликовал книгу «Геометрия путем изобретения», в которой излагал для детей геометрию не обычным дидактическим способом, а знакомил читателей с геометрическими представлениями, постепенно и как бы только подготавливая к ее изучению. Такая методика также дала положительные результаты.
В конце XIX — начале XX столетий историко-генетический метод стал широко популяризироваться деятелями математического образования. В 1904 г. французский математик А. Пуанкаре писал: «Зоологи считают, что за короткий период развития эмбриона животного он воспроизводит историю своих предшественников всех эпох. Кажется, что-то же самое происходит в развитии ума. Задача воспитания - дать уму ребенка пройти то, что изведали его предки, пройти быстро определенные этапы, но не опустить ни одного из них. Для достижения этой цели история науки должна служить поводырем».
В России одним из активных пропагандистов историко-генетического метода был русский исследователь истории математики и математического образования В.В. Бобынин. Приведем цитату из его работы 1886 г. «Философское, научное и педагогическое значение истории математики»: «Умственное развитие молодых поколений управляется теми же законами и вследствие этого проходит в существенных чертах те же самые фазы развития, которые имели место в соответствующих ступенях умственного развития всего человечества... преподавание каждой науки должно идти тем же путем, которым шла при своем развитии сама наука...» ([10] с. 8). Такой метод В.В. Бобынин называет генетическим, понимая под этим «метод, развивающий в преподавании положения и выводы науки именно таким образом, как они развивались в действительности» ([10] с. 8). В качестве основного педагогического значения истории математики Бобынин указывает именно на значение ее для генетического метода преподавания. Фактически о том же говорит и русский психолог и педагог П.Ф. Каптерев: «Наиболее удобная в педагогическом отношении форма изложения есть генетическая, когда сообщается история происхождения знания, показывается, как знание возникло и развивалось» ([10] с. 8).
Определенного рода повторяемость общего пути умственного развития человечества в формировании индивидуального сознания, которую на опыте собственной педагогической деятельности подмечали многие преподаватели XIX в., в середине XX столетия стала предметом психологических исследований. Психолог В.В. Давыдов считает, что учащиеся присваивают культурные формы в процессе учебной деятельности, осуществляя при этом мыслительные действия, адекватные тем, посредством которых исторически вырабатывались продукты духовной культуры, т.е. школьники как бы воспроизводят реальный процесс создания людьми понятий, образов, ценностей и норм. Отсюда В.В. Давыдов делает важный вывод о том, что обучение в школе всем предметам необходимо строить так, чтобы оно «в сжатой сокращенной форме воспроизводило действительный исторический процесс рождения и развития... знаний» ([11] с. 152). Таким образом, историко-генетический метод действительно может играть большую роль в преподавании математики, так как именно он позволяет учащимся пройти тот путь, который проходило человечество, добывая математические знания.
Историко-генетический метод побуждает каждый раз обосновывать введение того или иного понятия, рассказывая, какие задачи практики привели к его открытию, и как оно впервые использовалось. С его помощью учитель может предвидеть трудности, возникающие при усвоении учащимися школьной программы и преодолевать их, используя исторический опыт.
Историко-генетический метод способен подсказать учителю решение и некоторых чисто методических проблем, например, как лучше спланировать изучение данного учебного материала, какой методической разработке отдать предпочтение, в какой последовательности изучать те или иные темы. «Вообще, мы можем ожидать больший успех делая то, что нам подсказывает генетический принцип, чем следуя чисто формальной концепции математики» ([12] с.91). Этот метод может оказать учителю большую помощь при реализации в учебном процессе эвристических приемов: чтобы подвести учащихся к открытию математического факта, учитель должен кратко пройти вместе с ними тот путь, который привел людей к установлению этого факта.
Однако преподаватели прекрасно понимают, что попытка воспроизвести весь исторический путь познания математической истины, повторяя все детали ошибок и заблуждений первооткрывателей, приведет к отказу от тех преимуществ, которые предоставляют дидактике современные обобщающие идеи, концепции и методы науки, и, как следствие, к разрушению логической структуры курса. Поэтому историко-генетическому методу противопоставляется другой метод преподавания - логический.
При логическом изложении не должно быть ничего лишнего, никаких нарушающих стройность предмета исторических случайностей. Однако и ходе преподавания стало очевидным, что логический метод также не лишен недостатков. В своей строго логической форме, без указаний на происхождение понятий и выхода теории в практику, математическая дисциплина принимает слишком искусственный характер, «...мы видим, как вопросы могут быть разрешены, но перестаем понимать, как и почему они были поставлены» ([10] с. 8). По этой причине логическое изложение не заинтересовывает даже способных учащихся так, как могло бы.
Вот почему уже много лет не угасает интерес к историко-генетическому методу. Однако очевидно, что этот метод эффективен лишь в том случае, когда в процессе изложения научных понятий правильно найдено соотношение логического и исторического подхода в преподавании. Говоря об историко-генетическом методе, мы, безусловно, не имеем в виду его крайние формы - повторение в преподавании развития математического знания со всеми нюансами и тонкостями. Для методически правильной организации обучения учителю, прежде всего, необходимо знать общие законы развития математической науки, пути формирования и становления математических понятий и идей.
В конце XIX в. история математики как наука лишь зарождалась и поэтому не могла решить поставленных перед нею задач. Только в наше время, когда, благодаря исследованиям таких историков математики, как Г.Г. Цейтен, Б.Л. Ван-дер-Варден, Г. Вилейтнер, И.Я. Депман, А.П. Юшкевич, Б.А. Розенфельда и др., накоплен и систематизирован колоссальный историко-математический материал, стало возможным на основе этих данных делать обобщения, говорить об общих законах развития математического знания, прослеживать пути формирования математических понятий от их зарождения до современного состояния.
Исторические справки и сведения, эвристические идеи выводов формул и доказательств теорем, яркие несложные примеры, несомненно, заинтересуют учащихся и сделают более эмоциональными уроки математики, и главное, позволят им в случае необходимости даже через несколько лет снова вывести уже забытую формулу или теорему. Отметим также, что основные этапы эвристического рассуждения, реализуемого на уроке, могут быть подсказаны учителю данными истории математики и осуществлены с помощью историко-генетического метода.
Историко-генетический метод преподавания нельзя сводить только к использованию отдельных историко-математических сведений на уроках математики. Реализуя этот метод в своей работе, учитель повторяет вместе с учащимися путь развития науки, ведет их по пути новых открытий. Отдельные историко-математические сведения, которые он использует, - это лишь вершина айсберга, каким является метод. Разумеется, учителю необходимо знать и отдельные частные сведения, которые он может непосредственно рассказывать на уроке. Но если учитель знает основные этапы развития математических понятий и идей и знает конкретно, какой фрагмент этих сведений он хочет изложить учащимся, то подобрать нужный историко-математический материал ему будет несложно.
Историко-математические сведения, излагаемые учителем, могут быть самыми разными и нести самую разнообразную смысловую нагрузку, однако наиболее эффективным их использование будет лишь в том случае, если они излагаются в системе, единым методом и если их использование позволяет сделать изложение материала более последовательным, понятным, целостным и интересным.
преподавание тригонометрия школа математика
Глава 2. История развития тригонометрических понятий
Термин «тригонометрия» дословно означает «измерение треугольников». Его ввёл в употребление в 1595г. немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. Тригонометрия - раздел математики, который изучает зависимости между углами и сторонами треугольников, а также свойства тригонометрических функций синуса, косинуса, тангенса, котангенса, секанса и косеканса. К концу 17 века почти все эти функции были уже, по существу, известны. Правда, самого понятия тригонометрических функций, как и их обозначений, тогда ещё не существовало. Вместо них говорили о длинах некоторых хорд, касательных, секущих в окружности определённого радиуса. В тригонометрии изучались три вида соотношений: 1) между самими тригонометрическими функциями; 2) между элементами плоского треугольника (тригонометрия на плоскости); 3) между элементами сферического треугольника, т. е. фигуры, высекаемой на сфере тремя плоскостями, проходящими через её центр (сферическая тригонометрия).