В главе 3 того же учебника имеется параграф «Кодирование информации величинами алгоритмического языка. Информационные модели». Здесь вводится следующее определение модели: «Набор величин, содержащий всю необходимую информацию об исследуемых объектах и процессах, в информатике называется информационной моделью. Как и любая модель, информационная модель содержит не всю информацию о моделируемых явлениях, а только ту ее часть, которая нужна для рассматриваемых задач», данное определение требует уточнения: очевидно, что модель — это не только набор величин, но и отношения, связи между ними.
В соответствии с данным выше определение, информационные модели представляются как наборы величин в алгоритмах: скалярных переменных различных типов, массивов (таблиц) различных размеров и размерностей. В частности некоторые геометрические объекты описываются наборами величин, определяющих их параметры в декартовых координатах.
В параграфе «Информационное моделирование исполнителей на ЭВМ» рассматриваются способы программирования на учебном алгоритмическом языке работы учебных исполнителей — Робот и Черепашка — введенных в разделе алгоритмизации. Иначе говоря, в качестве модели исполнителя выступает не только набор характеризующих его параметров, но и алгоритм его работы. Если в таком контексте использовать понятие модели, то здесь следовало бы говорить об алгоритмической модели.
В учебнике А. Г. Гейна [4] понятие модели является центральным. Это понятие как стержень связывает содержание всего курса в единое целое. В соответствии с авторской концепцией «основной целью курса является обучение школьников решению жизненных задач с помощью ЭВМ». Под задачей понимают некоторую проблему, требующую решения. Везде в учебнике термин «модель» употребляется в контексте «модель задачи» и в комплексе с понятием четко сформулированной задачи. «Четко сформулировать задачу — это значит высказать те предположения, которые позволяют в море информации об изучаемом явлении или объекте выудить исходные данные, определить, что будет служить результатом и какова связь между исходными данными и результатом. Все это: предположения, исходные данные, результаты и связи между ними — называют моделью задачи». Если же связь между исходными данными и результатами выражается через математические соотношения, то имеем математическую модель. Далее описываются этапы разработки математической модели. «Создавая математическую модель задачи, нужно:
1)выделить предположения, на которых будет основана математическая модель;
2)определить, что считать исходными данными и результатами;
3) записать математические соотношения (формулы, уравнения, неравенства и т.д.), связывающие результаты с исходными данными».
Для решения поставленной задачи путем использования построенной математической модели применяется компьютер. А для того чтобы можно было использовать компьютер, требуется построить алгоритм и написать программу. Выполнение программы на ЭВМ приведет к искомому решению. Использование полученной программы и анализ результатов называется вычислительным экспериментом. В учебнике подчеркивается тот факт, что критерием правильности полученной модели является степень соответствия между расчетными результатами и реальными, получаемыми на практике. Если такого соответствия с допустимой точностью не получается, то модель требует уточнения.
Описанная методическая схема применяется на протяжении всего учебника к целому ряду задач. Причем задачи весьма разнообразные по своей методической сути. Так, задача о выборе места строительства железнодорожной станции на языке высшей математики называется вариационной задачей. Она сводится к минимизации функционала, выбранного в качестве критерия оптимальности места расположения станции. Безусловно, в учебнике не употребляются непонятные для десятиклассников слова «вариационная задача», «функционал». Постановка задачи осуществляется на смысловом уровне, а методом ее решения является дискретизация с подключением алгоритма выбора минимального значения в числовом массива.
Другая задача — планирование производства некоторого набора изделий на предприятии. Эта задача из области линейного программирования. Она сводится к решению системы неравенств при условии поиска экстремума целевой функции (максимального значения прибыли предприятия). Известно, что для решения такой задачи в линейном программировании применяется симплекс-метод. В учебнике, как и для предыдущей задачи, используется модельный численно-алгоритмический подход для простейшего случая — всего двух типов изделий: изделия А и изделия В. Поскольку количество изделий — величины х и у — принимают только целочисленные значения в ограниченных диапазонах, то задача, по сути своей, является дискретной, т.е. искусственной дискретизации не требуется. Решение сводится к вычислению матрицы значений прибыли — У(х,у) для всех вариантов величин х и у — и поиску в этой матрице наибольшего значения. Такой метод можно еще назвать переборным:производится полный перебор всех возможных значений х и у.
Если число изделий больше двух: 3, 4, 5 и т.д. — полный перебор становится нерациональным и может оказаться слишком долгим даже для компьютера. В этом случае никуда не уйти от симплекс-метода. В учебном программном обеспечении курса имеется прикладная программа «Оптима», предназначенная для решения задачи планирования (линейного программирования) симплекс-методом, допустимое число параметров — до шести. В учебнике не раскрывается суть метода, однако его название произносится. В лабораторной работе ученикам предлагается воспользоваться данной прикладной программой. Такая ситуация достаточно жизненна, поскольку довольно часто пользователи успешно применяют для решений своих задач готовые прикладные программы и при этом не всегда обязаны знать заложенные в них методы. Главное что требуется от пользователя — уметь грамотно поставить задачу, владеть интерфейсом с Прикладной программой.
Перечислены не все задачи, рассмотренные в учебнике Гейна, однако даже этот перечень дает представление о широте подхода авторов к теме моделирование в школьной информатике, данный учебник предназначен для старших классов (10-11) и ориентируется на уровень физико-математической подготовки учащихся этого возраста. Судя даже по описанным выше задачам, требования к этому уровню довольно высокие, данный курс может быть хорошей основой для формирования учебного комплекса физика-математика. Такое направление является наиболее подходящим для школ физико-математического профиля.
С содержательной и методической точки зрения линия математического моделирования в учебнике проработана достаточно основательно. Однако другие направления информационного моделирования остаются за рамками учебника.
В качестве основного средства реализации математических моделей на ЭВМ выступает программирование. Лишь применительно к решению одной задачи используются электронные таблицы. Это обстоятельство объясняется тем, что второй ведущей темой курса, после моделирования, является алгоритмизация. На примерах решения «жизненных задач» авторы учат не только построению математических моделей, но и составлению алгоритмов решения на основе этих моделей. Такая целевая установка с общей тенденцией, характерной для первых двух этапов эволюции информатики.
Современной тенденцией в развитии школьной информатики является увеличение веса содержательной линии информационных технологий. С этой позиции в качестве инструментального средства математического моделирования больше используют электронные таблицы. Для многих задач подходящим средством могут оказаться специализированные математические пакеты (Математика и др.), но они, как правило, менее доступны для школы, чем табличные процессоры. Кроме того, в базовом курсе информатики желательно обходиться прикладным ПО общего назначения. Электронные таблицы являются достаточно мощным математического моделирования. Практически все задачи, рассматриваемые в учебнике, можно решать с помощью электронных таблиц. Методика использования электронных таблиц в школьной информатике требует своего развития.
В учебнике того же авторского коллектива тема моделирования не ограничивается только математическим моделированием. Дается общее представление о моделировании. Определение понятия «модель» отсутствует, но приводится следующее определение: «Замена реального объекта (процесса или явления) его копией, отражающей существенные свойства этого объекта (процесса или явления), называется моделированием». Отсюда надо сделать вывод, что модель — это и есть та самая копия, что совершенно справедливо. Далее говорится о разделении моделей на материальные (натурные) и информационные, о различных формах информационных моделей (словесное описание, схема и др.), об ограниченности и целенаправленности информационных моделей. Тема математического моделирования также находит свое отражение в учебнике. Здесь авторы повторяют концепции, используемые в учебнике. Понятие «модель задачи» связывается с понятием «хорошо поставленная задача». Подчеркивается связь между моделью задачи и исполнителем, который будет применен для ее реализации. «Модель задачи, составленную в расчете на исполнителя, имитированного на ЭВМ, будем называть компьютерной моделью. Это означает, что исходные данные, результаты и связи между исходными данными и результатами представлены в виде, «понятном» компьютерному исполнителю». Далее дается вывод о том, что если данные и результаты представляют собой числовые величины, а исполнитель умеет только вычислять, то мы имеем дело с математической моделью. Утверждается, что решение всякой задачи с помощью ЭВМ происходит в четыре этапа.