Смекни!
smekni.com

Изучение истории становления и развития методики преподавания математики в России (стр. 6 из 7)

На первом этапе учитель сам оценивает, удалось ли ему реализовать намеченный план на практике. Для этого он формирует цель урока и обосновывает логику своих действий, которые спланировал для достижения этой цели. Затем сравнивает логику запланированных действий с логикой проведения реального урока. Для этого целесообразно остановиться на следующих вопросах:

Какие моменты урока оказались для учителя неожиданными?

Чего он не смог учесть при планировании урока?

Пришлось ли ему отступить от запланированных им действий и почему?

Заметил ли он свои речевые ошибки, недочёты, неудачно сформулированные вопросы?

Считает ли учитель, что урок достиг поставленной цели? Что является критерием этой оценки?

На втором этапе все эти вопросы – предмет дальнейшего обсуждения урока коллегами, присутствующими на уроке. План этого обсуждения можно представить в виде следующей последовательности вопросов:

Соответствует ли логика урока его цели?

Какие виды учебных заданий использовал учитель на уроке: тренировочные, частично-поисковые, творческие? Какие из них заслуживают положительной оценки? Почему?

Соответствуют ли учебные задания, подобранные учителем, цели урока?

Какие функции выполняют задания, предложенные учителем: обучающую, развивающую, контролирующую? Что заслуживает положительной оценки?

Грамотно ли учитель использовал математическую терминологию, предлагал учащимся вопросы и задания?

Какие методические приёмы, используемые учителем на уроке, заслуживают положительной оценки? При работе над отдельными заданиями, при изучении нового, при закреплении, проверке?

Какие формы организации деятельности учащихся (индивидуальная, фронтальная, групповая), применяемые учителем на уроке, заслуживают положительной оценки?

Удалось ли учителю установить контакт с детьми (обратная связь), успешно осуществлять коррекцию их действий, создавая ситуации успеха, реализовать идею сотрудничества? Какие моменты заслуживают положительной оценки с этой точки зрения.

3.2 Основные линии математического образования на современном этапе

Современные подходы к организации системы школьного образования, в том числе и математического образования, определяются, прежде всего, отказом от единообразной, унитарной средней школы. Направляющими векторами этого подхода являются гуманизация и гуманитаризация школьного образования.

Гуманитаризация школьного математического образования реализуется как гуманитарная ориентация обучения математике. Гуманитарная ориентация является одним из основополагающих принципов новой концепции и выражается, условно говоря, тезисом «не ученик для математики, а математика для ученика», означающим постановку акцента на личность, на человека.

Этим определяется переход от принципа «вся математика для всех» к внимательному учету индивидуальных параметров личности — для чего конкретному ученику нужна и будет нужна в дальнейшем математика, в каких пределах и на каком уровне он хочет и/или может ее освоить, к конструированию курса «математики для всех», или, более точно, «математики для каждого».

Одной из основных целей учебного предмета «Математика» как компоненты общего среднего образования, относящейся к каждому учащемуся, является развитие мышления, прежде всего, формирование абстрактного мышления, способности к абстрагированию и умению «работать» с абстрактными, «неосязаемыми» объектами. В процессе изучения математики в наиболее чистом виде может быть сформировано логическое и алгоритмическое мышление, многие качества мышления, такие, как сила и гибкость, конструктивность и критичность и т.д.

Эти качества мышления сами по себе не связаны с каким-либо математическим содержанием и вообще с математикой, но обучение математике вносит в их формирование важную и специфическую компоненту, которая в настоящее время не может быть эффективно реализована даже всей совокупностью отдельных школьных предметов.

В то же время конкретные математические знания, лежащие за пределами, условно говоря, арифметики натуральных чисел и первичных основ геометрии, не являются «предметом первой необходимости» для подавляющего большинства людей и не могут, поэтому составлять целевую основу обучения математике как предмету общего образования.

Именно поэтому в качестве основополагающего принципа образовательной технологии в аспекте «математики для каждого» на первый план выдвигается принцип приоритета развивающей функции в обучении математике. Иными словами, обучение математике ориентировано не столько на собственно математическое образование, в узком смысле слова, сколько на образование с помощью математики.

В соответствии с этим принципом главной задачей обучения математике становится не изучение основ математической науки как таковой, а общеинтеллектуальное развитие — формирование у учащихся в процессе изучения математики качеств мышления, необходимых для полноценного функционирования человека в современном обществе, для динамичной адаптации человека к этому обществу.

Формирование условий для индивидуальной деятельности человека, основывающейся на приобретенных конкретных математических знаниях, для познания и осознания им окружающего мира средствами математики остается, естественно, столь же существенной компонентой школьного математического образования.

С точки зрения приоритета развивающей функции конкретные математические знания в «математике для каждого» рассматриваются не столько как цель обучения, сколько как база, «полигон» для организации полноценной в интеллектуальном отношении деятельности учащихся. Для формирования личности учащегося, для достижения высокого уровня его развития именно эта деятельность, если говорить о массовой школе, как правило, оказывается более значимой, чем те конкретные математические знания, которые послужили ее базой.

Гуманитарная ориентация обучения математике как предмету общего образования и вытекающая из нее идея приоритета в «математике для каждого» развивающей функции обучения по отношению к его чисто образовательной функции требует переориентации методической системы обучения математике с увеличения объема информации, предназначенной для «стопроцентного» усвоения учащимися, на формирование умений анализировать, продуцировать и использовать информацию.

Среди общих целей математического образования центральное место занимает развитие абстрактного мышления, включающего в себя не только умение воспринимать специфические, свойственные математике абстрактные объекты и конструкции, но и умение оперировать с такими объектами и конструкциями по предписанным правилам. Необходимой компонентой абстрактного мышления является логическое мышление — как дедуктивное, в том числе и аксиоматическое, так и продуктивное — эвристическое и алгоритмическое мышление.

В качестве общих целей математического образования рассматриваются также умение видеть математические закономерности в повседневной практике и использовать их на основе математического моделирования, освоение математической терминологии как слов родного языка и математической символики как фрагмента общемирового искусственного языка, играющего существенную роль в процессе коммуникации и необходимого в настоящее время каждому образованному человеку.

Гуманитарная ориентация обучения математике как общеобразовательному предмету определяет конкретизацию общих целей в построении методической системы обучения математике, отражающей приоритет развивающей функции обучения. С учетом очевидной и безусловной необходимости приобретения всеми учащимися определенного объема конкретных математических знаний и умений, цели обучения математике образовательной технологии “Школа 2100” могут быть сформулированы следующим образом:

— овладение комплексом математических знаний, умений и навыков, необходимых: а) для повседневной жизни на высоком качественном уровне и профессиональной деятельности, содержание которой не требует использования математических знаний, выходящих за пределы потребностей повседневной жизни; б) для изучения на современном уровне школьных предметов естественнонаучного и гуманитарного циклов; в) для продолжения изучения математики в любой из форм непрерывного образования (в том числе, на соответствующем этапе обучения, при переходе к обучению в любом профиле на старшей ступени школы);

— формирование и развитие качеств мышления, необходимых образованному человеку для полноценного функционирования в современном обществе, в частности эвристического (творческого) и алгоритмического (исполнительского) мышления в их единстве и внутренне противоречивой взаимосвязи;

— формирование и развитие у учащихся абстрактного мышления и, прежде всего, логического мышления, его дедуктивной составляющей как специфической характеристики математики;

— повышение уровня владения учащимися родным языком с точки зрения правильности и точности выражения мыслей в активной и пассивной речи;

— формирование умений деятельности и развитие у учащихся морально-этических качеств личности, адекватных полноценной математической деятельности;

— реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира;

— формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и его закономерностей, в частности как базы компьютерной грамотности и культуры;

— ознакомление с ролью математики в развитии человеческой цивилизации и культуры, в научно-техническом прогрессе общества, в современной науке и производстве;

— ознакомление с природой научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности.