Смекни!
smekni.com

Использование мультимедийных средств при изучении основных свойств движений в курсе планиметрии основной школы (стр. 8 из 9)

Третья часть. Здесь раскрывается понятие центрально-симетричной фигуры. Построение фигуры производится по точкам. После построении всех точек происходит их медренное соединение красными отрезками, с целью акцентирования внимания учащихся. Здесь рекомендуется проговаривать еще раз какая точка является образом соответствующей вершины.

В конце приводится определение под запись учеников: «Если преобразование симметрии относительно точки О переводит фигуру F в себя, то она называется центрально - симметричной, а точка О называется центром симетрии. «

Десятая сцена посвящена доказательству теоремы «преобразование симметрии относительно точки является движением». В данной сцене упор сделан на выделение основных элементов, что способствует лучшему усвоению логики доказательства теоремы. Так как навигация по кадрам позволяет проигрывать сцену по шагам, то учителю рекомендуется дать это доказательство под запись. Привлекая к работе учеников только дополнительными вопросами (например, при рассмотрении треугольников XOY и X1OY1 попросить учеников выделить равные элементы и после правильного ответа отобразить их).

Симмерия относительно прямой

Сцены с 11 по 13 посвящены теме «Симетрия относительно прямой». В сцене 11 дается основной алгоритм построения симметричной точки относительно прямой. Основной упор сделан на постепенное выделение основных элементов на рисунке при построении. После ознакомления ученикам рекомендуется самостоятельно сделать данные построения.

С помощью сцены 12 ученикам предлагается усложненная задача на тему «Симметрия относительно прямой». Основное назначение презентации в том чтобы наглядно показать построение фигуры симметричной треугольнику, посредством построения 3-х симметричных точек и их последовательное соединение отрезками (переход с метки 12:9 на метку 12:10). После прохождния данного материала ученикам необходимо дать задачу на раскрытия понятия «центрально-симетричная фигура» (например, построение фигуры симметричной отночительно центр пересечения диагональ ромба), напомнив ученикам о прохождении данного понятия в предыдущей теме (сцена 8).

В 13 сцене происходит доказательство теоремы о том, что преобразование симметрии относительно прямой является движением. На рисунке к данной сцене наглядно демонстрируется почему абсциссы точек отличаются знаком (показывается при как при помощи сопровождающего текста, так и при помощи смещения равных линий на оси x) (метка 13:14). Данный момент учитель должен подчеркнуть, концентрируя внимание учеников на равных отрезках на оси ОX (равные отрезки выделены синим и красным цветом) и устно найти координату по оси ОХ точки А` и B`.

Поворот

Сцена 14 посвещена преобразованию «Поворот». Здесь особое внимание уделяется алгоритму построения образа точки при данном преобразовании. Наглядно при помощи транспортира показывается процесс построения угла против часовой стрелки, который ученик должен проделать. На этой теме рекомендуется уделить особое внимание построению образа точки при повороте, проделывая с учениками аналогичные задания.

Параллельный перенос

В 15 сцене ученики знакомятся с движением, при котором одновременно меняются координаты как по оси х, так и по оси y. (метка 15:6 – 15:7) Здесь показано как перемещается фигура при таком движении, благодаря чему ученики лутше запоминают данный вид преобразования. После демонстрации учитель обращает внимание учеников на какое именно расстояние переместилась точка Х фигуры по ее координатам x и y, отмеченных на осях.

Далее (метка 15:8 – 15:9) наглядно показывается при помощи выделенных на осях отрезках чему равны координаты по точки Х`.

В сцене 16 идет доказательство утверждения о том, что параллельный перенос является движением. На кадре 16:10-11 наглядно показано расстояние на которое произойдет перемещение точек (для того чтобы облегчить восприятие этого процесса, для каждой точки выбран свой цвет).Далее (кадр 16:12) показываем паралельный перенос двух точек на соответствующие расстояния по осям x и y. И на основании материала полученного учениками при введение понятия «паралельный перенос» делается вывод о координатах точек A` и В`. После, в кадре 16:14 идет одновременный быстрый показ формулы для подсчета AB2 и медленное появление отрезка AB, что ведет к наиболее быстрому и продуктивному управлению вниманием учеников. По аналлогичной схеме происходит подстчет A`B`2.

В кадре 16:19 вместо доказательства появляется новый текст: «Как можно было заметить при паралельном переносе точки смещаются по паралельным (или совпадающим) прямым на одно и то же расстояние.» Здесь учитель обращает внимание учеников на данный факт указывая на стрелки, котрые показывают движение точек. Данный пункт является связующим между предыдущим доказательством и следующим, говорящем о том, что «При параллельном переносе прямая переходит в параллельную прямую (или в себя)». В начале доказательства этого утверждения происходит переход быстрый от изображения полученного при доказательстве прошлого утверждения к новому (кадр 16:22). Данный переход не должен вызывать у учащихся затруднений, так как в начале сцены (при доказательстве предыдущего утвеждения) построения точек A` и В` подробно рассмотрено. После чего рассматривается четырехугольник и доказывается, что он паралеллограмм.

В сцене 17. Дана задача по теме параллельный перенос «При параллельном переносе точка (1; 1) переходит в точку (- 2; 0). В какую точку переходит начало координат?» В сцене рассматриваются два вида решения – геометрическое и аналитическое. При геометрическом решении не дается ни каких сопутствующих текстов, здесь учителю необходимо сопровождать иллюстрационный материал соответствующими комментариями. С кадра 17:1 до кадра 17:2 показывается переход точки A в точку A` с выделением на осях X и Y.

Затем учителю необходимо напомнить ребятам процесс параллельного переноса, который демонстрировался в сцене 16 («параллельный перенос двух точек производится на одни и тоже расстояния по осям X и Y соответственно»). После чего перейти на кадры 17:3 и 17:4. Далее необходимо отметить координаты точки O` и построить ее на координатной плоскости (кадр 17:5-17:6).

Аналитическое решение задачи начинается с кадра 17:17, где в начале ученики с учителем должны вспомнить формулы параллельного переноса и в дальнейшем подставить в них соответствующие координаты точек A и A`. Подстановка координат в формулу «x` = x +a» происходит при помощи учителя и наглядной демонстрации процесса подстановки при помощи соответствующих указателей. Подстановку координат в формулу «y` = y + b» необходимо ученикам произвести самостоятельно.

После соответствующих подстановок ученики под руководством учителя выводят формулы переноса для конкретных условий задачи. На заключительном этапе идет подстановка координат точки O в соответствующие формулы и вычисляются координаты точки O`. Здесь необходимо подчеркнуть, что при решении задачи двумя разными способами ответ получается одинаковым.

Остальные понятия, такие как сонаправленность полупрямых и равенство фигур, рекомендуется изучать классическим способом. Т.к. благодаря мультимедийному пособию ученикам уже известны основные свойства движений и они с помощью учителя без особых усилий смогут применить накопленные знания при изучении данных тем. Например, в теме «сонаправленность полупрямых» основным элементом является параллельный перенос, с которым ученики подробно ознакомились на предыдущих уроках, а в теме «равенство фигур» присутствуют все виды движений, с которыми ученики сталкивались. Перед изучением данной темы учеником рекомендуется повторить материал из сцены 12, которая содержит часть доказательства приведенной здесь теоремы.

Таким образом, пособие выполняет свою основную задачу ознакомить учеников с основными понятиями при изучении темы движение в 8 классе и удовлетворяет психолого-педагогическим требованиям, приведенным в первой главе.


Заключение

Основная цель дипломной работы - создание мультимедийного дидактического пособия по теме «Движение» школьного курса геометрии в 8 классе. Для достижения данной цели, были решены следующие задачи:

1. Исследовать психолого-педагогические аспекты применения мультимедийных средств в процессе обучения, в частности, установить роль и виды наглядности в обучении, требования, предъявляемые компьютерным средствам обучения;

2. Проанализировать школьные учебники по теме «Движение» за 8 класс и выбрать учебник по которому будет разрабатываться пособие.

3. Разработать мультимедийное методическое пособие по теме «Движение».

4. Разработать методические рекомендации по использованию мультимедийного дидактического пособия.

В первой главе был сделал вывод, что не смотря на различия в пространственном мышлении и в различных математических складов (типов) ума большинство учеников испытывают нужду в использовании при решении задач наглядных опор. Таким образом обоснована необходимость применения наглядных пособий.

А так же даны основные психологические особенности использования ТСО, которые в дальнейшем учитывались при создании пособия и позволяют повысить эффективность урока.

Благодаря тому, что большей части учеников требуется опора на наглядные пособия и тому что ТСО (а именно flash) позволяет более наглядно показать процессы движения как на плоскости (и в пространстве), что должно способствовать более быстрому усвоению основного материала и развитию наглядно-образных представлений у учеников.

Во второй главе проведя анализ был выбран учебник А.В. Погорелов «Геометрия 7-11», для которого происходила разработка данного пособия. Разработка под определенный учебник позволяет учителям применять его вместе с другими методическими материалами (учебник, задачники…) как целостный методический комплект.