Глава 2. Методические аспекты использования исторического материала на уроках математики в начальной школе
2.1 Подготовка учителя к использованию познавательных заданий историко-математического характера
2.1.1 Значение познавательных заданий историко- математического характера
Одна из возможностей формирования творческого мышления учащихся – развитие их познавательных способностей. Существенным педагогическим средством, направленным на развитие внутренней потребности интеллектуального роста, является использование познавательных заданий. Задача учителя состоит в том, чтобы при помощи познавательных заданий предусмотреть ход мыслительной деятельности учащихся, который привел бы их к самостоятельным выводам, обобщениям и открытиям. Большую роль в развитии школьников играет познавательные задания исторического характера. Задания данного вида имеют определенные методологические и педагогические цели: установление диалектической взаимосвязи между историей страны и края, раскрытие причинно-следственных связей, закономерностей исторического процесса, углубление, расширение, конкретизация, повторение и закрепление заданий по предмету. Кроме того эти задания являются средством активизации познавательной деятельности, способствуют установлению связей между учебной и внеучебной работой и приобщению учащихся к самостоятельному творческому труду. Знакомство с историей науки существенно влияет на более глубокое усвоение основных научных понятий и дает возможность правильно формулировать представления о диалектике процесса познания, закономерности развития математической науки и эмоционально настраивать учащихся на положительное восприятие культурного наследия.
2.1.2 Формы организации занятий с использованием исторического материала
Чтобы учитель научился использовать в своей работе задания историко-математического характера, ему необходимо владеть научными знаниями исторического материала и умениями включать исторический материал в тему урока.
Знание прошлого науки позволяют в концентрированном виде получать представление о формировании научных понятий, возникновении научных идей, создании методов исследования. О значении истории науки говорил еще Г.Лейбниц: « Весьма полезно знать истинное происхождение замечательных открытий, особенно таких, которые сделаны не случайно, а силою мысли. Это приносит пользу не только тем, что история воздает каждому свое и побудит других добиваться таких же похвал, сколько тем, что познание метода на выдающихся примерах ведут к развитию искусства открытия». Б.Гнеденко, развивая эту мысль отмечал, что история науки – это тот факел, который освещает новым поколениям путь дальнейшего развития и передает им священный огонь Птолемея, толкающий их на новые открытия, на вечный поиск, к познанию окружающего мира, включая их самих.
История науки в школе нужна для реализации важнейших целей обучения: формирования диалектико-материалистического мировоззрения, научного и теоретического мышления, эмоционально-мотивационной сферы и системы ценностей учащихся. Формирование указанных свойств личности служит одновременно и средством глубокого усвоения науки, развития и воспитания школьников. История науки в единстве с материалом и логикой предмета показывает науку как деятельность на макро- и микроуровне: исторический процесс развития науки и процесс отдельного открытия. История математики представляет собой часть общей истории развития человеческой культуры. История математики как одна из математических дисциплин включает в себя:
- факты, накопленные в ходе ее развития;
- гипотезы, т.е. основанные на фактах научные предположения, подвергающиеся в дальнейшем проверке опытом;
- методология, т.е. общетеоретические истолкования математических знаков и теорий, характеризующие общий подход к изучению предмета «Математика».
Предметом изучения является выяснение того, как происходит развитие элементов математики в изучаемый исторический период и куда оно ведет. В соответствии с этим на историю математики возлагается решение большого круга задач.
Чтобы подготовить учителей к использованию познавательных заданий историко-математического характера, необходима организация специальных занятий. Они призваны помочь учителю углубить знания по истории математики и научить его работать с историческим материалом в начальной школе. Для этого используются занятия, цель которых:
- изучить математическую культуру и ее развитие у различных народов и наций, уделив особое внимание России;
- раскрыть основные закономерности развития математики;
- познакомить с жизнеописанием и научной деятельностью ученых-математиков;
- определить содержание, объем исторических сведений, используемых в школьном курсе математике;
- обучить студентов основным принципам отбора материала из истории математики, который можно использовать в школе на уроках и во внеклассной работе;
- сформировать технологию использования элементов истории математики в процессе обучения.
Для примера покажем общий план подготовки к урокам, на которых есть возможность использовать исторический материал для активации познавательной деятельности школьников:
- определить место исторического материала при изучении темы;
- установить, с какими элементами данной темы или группы тем допустимо связать использование исторического материала;
- определить место исторического материала в уроке, возможность использования его на протяжении всего урока или фрагментарно;
- отобрать из известных средств реализации те, которые могут быть использованы наиболее результативно на данном уроке;
- наметить внеклассные занятия, на которых могут быть более полно обсуждены данные вопросы.
Представим также формы включения историко-математического материала. К ним относятся:
На уроках:
- исторические отступления на уроке (беседа 2-10 минут);
- сообщение исторических сведений, органически связанных с программным материалом;
- специальные уроки по истории математике.
На внеурочных занятиях:
- математические кружки;
- историко-математические вечера;
- стенная газета;
- внеклассное чтение;
- домашнее сочинение;
- составление альбомов и альманахов;
- работа по сбору «народной математике»;
- сообщение учителя или учащихся на классном собрании;
- беседы, лекции, доклады учителя или приглашенных научных работников;
- просмотр специальных научно-исторических кинофильмов и диапозитивов.
Выделим основные принципы, на которых строятся познавательные задания историко-математического характера. Ими являются:
- охват основных тем школьного курса математики;
- актуальность темы для истории края страны;
- раскрытие общих закономерностей в историческом развитии науки, особенностей в развитии отечественной математики;
- разнообразие познавательных заданий по форме и содержанию, по степени трудности их выполнения;
- учет интересов учащихся.
Использование познавательных заданий приводит к положительным результатам тогда, когда имеет место:
- систематическая постановка заданий;
- постепенное и последовательное их положение;
- осознание учащимися роли и значения заданий для развития их познавательных способностей;
- максимальное приближение заданий к потребностям и основным тенденциям интеллектуального развития учащихся.
Рассмотрим требования к разработке системы познавательных заданий исторического характера. К ним относятся:
- глубокая научность материала заданий;
- органическая связь с программой по математике;
- направленность заданий на приобретение новых знаний, на повторение и закрепление их, на развитие умений и навыков, на использование различных источников и методов исследования;
- задания по возможности должны носить проблемный характер, ориентировать на самостоятельный поиск, исследование и вызывать повышенный интерес.
И вообще этап знакомства учеников со старинными задачами следует начинать со сведений о жизни и деятельности русского математика и педагога Леонтия Филипповича Магницкого. Сообщение биографических данных об этом самородке – математике служит средством пробуждения интереса учащихся к математике.
Вот некоторые факты его биографии.
Родился Л.Ф. Магницкий 9 июня 1669 года в Осташковской слободе Тверской губернии в семье крестьянина. Один из священников того времени писал, что мальчик с малых лет прославился в своей слободе тем, что сам научился писать и читать, «разбирать мудреное и трудное». Настойчивым и упорным трудом он приобрел глубокие познания в точных науках.
Знатные богомольцы перевезли мальчика в Москву.
В знак глубокого уважения к математическому таланту царь Петр Ι предложил изменить Фамилию мальчика Телятин на Магницкого, объясняя свое решение тем, что «как магнит привлекает к себе железо, так и он своими природными и самообразованными способностями обратил внимание на себя». Возможно поэтому именно ему было предложено написать учебник по изучению математики для школы навигации, которая была открыта впервые в Москве в 1701 году по указу Петра Ι.
Л.Ф. Магницкий успешно справился с предложением Петра Ι, и в 1703 году в Москве была издана книга «Арифметика, сиречь наука числительная» на славянском языке. Эта книга названа еще энциклопедией математических знаний того времени.
Кроме основ арифметики, учебник содержал элементы алгебры, геометрии, тригонометрии, астрономии и навигации, которые нужны были для учащихся школы навигации. Учебник насыщен задачами и примерами, большинство из которых увлекательны по содержанию. Книга была в употреблении почти до середины ΧVΙΙΙ века, являясь, по словам М. Ломоносова, «вратами своей учености».