Смекни!
smekni.com

Методические особенности изучения темы "Бериллий и его соединения" посредством интегрированных уроков (стр. 1 из 5)

ВВЕДЕНИЕ

Бериллий был обнаружен в 1798 г. знаменитым французским химиком Л. Вокленом в полудрагоценном камне берилле. Отсюда и название элемента. Впрочем, Воклен выделил только новую «землю» - оксид неизвестного металла. Относительно чистый бериллий в виде порошка был получен только через 30 лет независимо Ф. Вёлером в Германии и Э. Бюсси во Франции.

Долгое время многие химики считали, что бериллий - трехвалентный металл с атомной массой 13,8. Для такого металла не находилось места в периодической системе, и тогда, несмотря на очевидное сходство бериллия с алюминием, Д. И. Менделеев поместил этот элемент во вторую группу, изменив его атомную массу на 9. Вскоре шведские ученые Л. Нильсон и О. Петерсон нашли, что атомная масса бериллия 9,1, что соответствовало предположениям Д. И. Менделеева. Во второй половине XX в. Бериллий - стал необходим во многих отраслях техники. Этот металл и его сплавы отличаются уникальным сочетанием различных свойств. Конструкционные материалы на основе бериллия обладают одновременно и легкостью, и прочностью, и стойкостью к высоким температурам. Будучи в 1,5 раза легче алюминия, эти сплавы в то же время прочнее многих специальных сталей. Эти качества и сам бериллий, и многие его сплавы не утрачивают при температуре 700-800°С, поэтому они используются в космической и авиационной технике.

Бериллий необходим и в атомной технике: он стоек к радиации и выполняет роль отражателя нейтронов.

ГЛАВА 1. СОСТОЯНИЕ ИЗУЧАЕМОГО ВОПРОСА В СОВРЕМЕННОЙ РОССИЙСКОЙ ШКОЛЕ

Для осознанного понимания химических процессов огромное значение имеет представление о химических элементах. Эти вопросы всегда были самыми сложными не только для учащихся, но и для учителей. Учебный материал темы поделен на 4 урока, поскольку давно известно, что на одном уроке нельзя ознакомить учащихся более чем с двумя понятиями [2].

Преподавание темы «Бериллий» начинается с 9 класса, первого полугодия. При изучении этой темы пользуются учебником химии под редакцией Г. Е. Рудзитис, Ф.Г. Фельдман, также учебником за 8 - 9 класс под редакцией Н. С. Ахметова. Дидактическим материалом служит книга по химии для 8 - 9 классов под редакцией А. М. Радецкого, В. П. Горшкова; используются задания для самостоятельной работы по химии за 9 класс под редакцией Р. П. Суровцева, С. В. Софронова; используется сборник задач по химии для средней школы и для поступающих в вузы под редакцией Г. П. Хомченко, И. Г. Хомченко. В 9 классе на изучение закономерностей протекания химических реакции отводится 4 ч [3, 4].

ГЛАВА 2. ТЕОРЕТИЧЕСКАЯ ПОДДЕРЖКА ТЕМЫ «БЕРИЛЛИЙ»

Соединения бериллия в виде драгоценных камней были известны еще в древности. С давних пор люди искали и разрабатывали месторождения аквамаринов, изумрудов и бериллов. Есть свидетельства о том, что еще во времена Египетских фараонов разрабатывались изумрудные прииски в Аравийской пустыни. Но только в конце 18 века химики заподозрили, что в бериллах есть какой-то новый, не известный элемент. В 1798 году французский химик Воклен выделил из берилла окись "La terree du beril", отличавшуюся от окиси алюминия. Эта окись придавала солям сладкий вкус, не образовывала квасцов, растворялась в растворе карбоната аммония и не осаждалась оксалатом или тартратом калия. Металлический бериллий был впервые получен в 1828 году известным немецким ученым Велером и одновременно французским ученным Блюссеном, который получил порошок металлического бериллия восстановлением хлористого бериллия металлическим калием. Промышленное получение бериллия началось только в 20-х годах нашего столетия. До сороковых годов масштабы производства и применения бериллия были не велики. Однако с открытием свойств бериллия, обусловивших его использование в атомной энергетике спрос на него сильно возрос. Что в свою очередь стало причиной широкого развития исследовательских и геологоразведочных работ в этой области.

Химические и химико-физические свойства бериллия

Бериллий (Be) - имеет атомный номер 4 и атомный вес 9.0122. Он находится во втором периоде периодической системы и возглавляет главную подгруппу 2 группы, в которую также входят магний, кальций, стронций, барий и радий. Электронная структура атома бериллия 1s 2s. На внешней оболочке он имеет два электрона, что является характерным для элементов этой группы. Электронная структура внешней оболочки иона каждого из этих элементов с зарядом +2 соответствует электронной структуре инертного газа с атомным номером на две единицы меньше номера рассматриваемого элемента. Бериллий вещество серо-стального цвета; при комнатной температуре металлический бериллий имеет плотно упакованную гексагональную решетку, подобную решетке магния. Атомный (металлический) радиус бериллия равен 1.13 А. Увеличение массы и заряда ядра при сохранении конфигурации электронных оболочек служит причиной резкого уменьшения атомного и ионного радиусов бериллия по сравнению с соседним литием. После отрыва валентных электронов атом бериллия образует ион типа благородных газов, и несет, подобно литию, всего одну электронную оболочку, но характеризуется значительно меньшими размерами и компактностью. Истинный ионный радиус бериллия - 0,34 А является наименьшим среди металлов. Потенциалы ионизации у бериллия равны (соответственно для первого, второго, третьего и четвертого электронов) I1-9,28; I2-18,12; I3-153,1; I4-216,6 эВ. На кривой потенциалов ионизации бериллий занимает одно из верхних мест. Последнее соответствует его малому радиусу и характеризует бериллий как элемент не особенно охотно отдающий свои электроны, что в первую очередь определяет степень химической активности элемента. Этот же фактор имеет решающее значение в образование того или иного типа химической связи при соединение бериллия с другими элементами. С точки зрения электроотрицательности бериллий наряду с алюминием может рассматриваться как типичный переходный элемент между электроположительными атомами металлов, легко отдающих свои электроны, и типичными комплексообразователями, имеющими тенденцию к образованию ковалентной связи. В нейтральных растворах гидрокcилы бериллия дисcоциируют по схеме:

Be2+ + OH- <=> Be(OH)2 <=> H2BeO2 <=> 2H+ + [BeO2]2-

В щелочных растворах, содержащих атомы щелочных элементов, осуществляется возможность возникновения более прочной ковалентной связи между анионом и атомом амфотерного элемента. Происходит образование комплекса, прочность которого в первую очередь определяется концентрацией элементов с низким значением электроотрицательности, то есть щелочей. Бериллий в этих условиях ведет себя как комплексообразователь. В кислых растворах, характеризующихся высокой концентрацией водородного иона, элементы с низким значение электроотрицательности, подобные бериллию, могут находится в форме свободных, положительно заряженных ионов, т.е. являются катионами. Свойства основности элемента, как известно характеризуются также величиной ионного потенциала w/r, выражающего энергию силового поля иона. Как и следовало ожидать, маленький ион бериллия отличается большой величиной ионного потенциала, равной 5,88. Таким образом, по характеру своих химических свойств, всецело определяемых особенностями строения электронных оболочек атома, бериллий относится к типичным амфотерным элементам. Металлический бериллий растворяется в соляной и разбавленной азотной кислоте, а также в водных растворах гидроокисей натрия и калия с выделением водорода и образованием бериллатов с общей формулой М2ВеО2. Наибольший интерес с точки зрения возможной точки зрения возможной роли в природных процессах представляют галоидные и карбонатные соединения. Фтористый и хлористый бериллий представляет собой устойчивые соединения, очень хорошо растворимые в воде. Оба они легкоплавки (температура плавления фтористого бериллия 577, хлористого бериллия 405) и относительно легко сублимируются. В то же время нейтральный карбонат бериллия почти нерастворим в воде и является весьма непрочным соединением. В слабо щелочной и кислой среде в присутствии определенного количества электроположительных атомов щелочных металлов характерным для бериллия является образование комплексов. При этом все комплексы бериллия являются мало прочными соединениями, которые могут существовать только в определенных интервалах щелочности растворов. Таким образом на основании общего обзора химических свойств бериллия могут быть сделаны следующие предварительные выводы, характеризующие возможную роль различных соединений бериллия в геохимической истории этого элемента.

1) в условиях существенно кислой среды при низкой концентрации в растворах электроположительных атомов щелочей бериллий, вероятнее всего, может мигрировать в форме прекрасно растворимых и легколетучих галоидных соединений - фторидов и хлоридов;

2) в слабокислой и щелочной средах в присутствии достаточного количества электроположительных атомов щелочей миграция бериллия может осуществляться в форме различных комплексных бериллатов, обладающих разной устойчивостью в зависимости от характера среды;

3) существенно щелочная среда в некоторых случаях также может способствовать миграции бериллия в форме бериллатов или карбонатбериллатов, легко распадающихся при понижении щелочности раствора;

4) миграция растворимых в воде соединений бериллия может осуществляться как в истинных, так и в надкритических растворах, поскольку соединения, растворимые в жидкой воде, легко растворяются и в надкритической фазе воды, давая ненасыщенные такими соединениями растворы;

Заканчивая характеристику отдельных свойств бериллия, без внимательного анализа которых вряд ли возможно правильно представить его минералогию и понять особенности поведения в природных процессах, необходимо отметить, что свойства многих соединений бериллия, интересных в геохимическом отношении, изучены совершенно недостаточно.