1 этап: Графический метод заключается в построении множества допустимых решений ЗЛП, и нахождении в данном множестве точки, соответствующей max/min целевой функции.
В связи с ограниченными возможностями наглядного графического представления данный метод применяется только для систем линейных неравенств с двумя неизвестными и систем, которые могут быть приведены к данному виду.
Для того чтобы наглядно продемонстрировать графический метод, решим следующую задачу:
1. На первом этапе надо построить область допустимых решений. Для данного примера удобнее всего выбрать X2 за абсциссу, а X1 за ординату и записать неравенства в следующем виде:
Так как
и графики и область допустимых решении находятся в первой четверти. Для того чтобы найти граничные точки решаем уравнения (1)=(2), (1)=(3) и (2)=(3).Как видно из иллюстрации многогранник ABCDE образует область допустимых решений.
Если область допустимых решений не является замкнутой, то либо max(f)=+ ∞, либо min(f)= -∞.
2. Теперь можно перейти к непосредственному нахождению максимума функции f.
Поочерёдно подставляя координаты вершин многогранника в функцию f и сравнивать значения, находим что f(C)=f(4;1)=19 – максимум функции.
Такой подход вполне выгоден при малом количестве вершин. Но данная процедура может затянуться если вершин довольно много.
В таком случае удобнее рассмотреть линию уровня вида f=a. При монотонном увеличении числа a от -∞ до +∞ прямые f=a смещаются по вектору нормали[1]. Если при таком перемещении линии уровня существует некоторая точка X – первая общая точка области допустимых решений (многогранник ABCDE) и линии уровня, то f(X)- минимум f на множестве ABCDE. Если X- последняя точка пересечения линии уровня и множества ABCDE то f(X)- максимум на множестве допустимых решений. Если при а→-∞ прямая f=a пересекает множество допустимых решений, то min(f)= -∞. Если это происходит при а→+∞, то max(f)=+ ∞.
В нашем примере прямая f=a пересевает область ABCDE в точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.
2 этап.
Задача:
Решить графически систему неравенств. Найти угловые решения.
x1+ 2x2 <=10
2x1+x2 <=10
x1+3x2>=3
5x1-x2 >=-5
x1+6x2>=6
x1>= 0, x2>=0
> restart;
>
>
>
>
>
>
>
>
>
>
>
>
>
> with(plots);
> with(plottools);
>
> S1:=solve( {f1x[1, 1] = X6[1, 1], f2x[1, 1] = X6[1, 2]}, [x, y]);
>
>
>
>
>
>
>
>
>
Ответ: Все точки Si где i=1..10 для которых x и y положительна.
Область, ограниченная данными точками: (54/11,2/11) (5/7,60/7) (0,5) (10/3, 10/3)
3 этап. Каждому ученику даётся один из 20 вариантов, в котором ученику предлагается самостоятельно решить неравенство графическим методом, а остальные примеры в качестве домашнего задания.
Занятие №4 Графическое решение задачи линейного программирования
Тип урока: урок изучения нового материала.
Вид урока: Лекция + урок решения задач.
Продолжительность: 2 часа.
Цели: 1) Изучить графическое решение задачи линейного программирования.
2) Научить пользоваться программой Maple при решении задачи линейного программирования.
2) Развить восприятие, мышление.
План занятия: 1 этап: изучение нового материала.
2 этап: Отработка нового материала в математическом пакете Maple.
3 этап: проверка изученного материала и домашнее задание.
Ход занятия.
Графический метод довольно прост и нагляден для решения задач линейного программирования с двумя переменными. Он основан на геометрическом представлении допустимых решений и ЦФ задачи.
Каждое из неравенств задачи линейного программирования (1.2) определяет на координатной плоскости
некоторую полуплоскость (рис.2.1), а система неравенств в целом – пересечение соответствующих плоскостей. Множество точек пересечения данных полуплоскостей называется областью допустимых решений (ОДР). ОДР всегда представляет собой выпуклуюфигуру, т.е. обладающую следующим свойством: если две точки А и В принадлежат этой фигуре, то и весь отрезок АВ принадлежит ей. ОДР графически может быть представлена выпуклым многоугольником, неограниченной выпуклой многоугольной областью, отрезком, лучом, одной точкой. В случае несовместности системы ограничений задачи (1.2) ОДР является пустым множеством.Все вышесказанное относится и к случаю, когда система ограничений (1.2) включает равенства, поскольку любое равенство
можно представить в виде системы двух неравенств (см. рис.2.1)
ЦФ
при фиксированном значении определяет на плоскости прямую линию . Изменяя значения L, мы получим семейство параллельных прямых, называемых линиями уровня.