3. Если ах2+ bх = 0, b≠ 0. Уравнения такого вида решаются по алгоритму:
1) вынести общий множитель за скобки;
2) найти x1, x2.
Например, х2 - 3х = 0. Перепишем уравнение х2 - 3х = 0 в виде х (х - 3) = 0. Это уравнение имеет, очевидно, корни x1 = 0, x2 = 3. Других корней оно не имеет, ибо если в него подставить вместо х любое число, отличное от нуля и 3, то в левой части уравнения х (х - 3) = 0 получится число, не равное нулю.
Итак, данные примеры показывают, как решаются неполные квадратные уравнения:
1) если уравнение имеет вид ах2 = 0, то оно имеет один корень х = 0;
2) если уравнение имеет видах2 + bх = 0, то используется метод разложения на множители: х (ах +b) = 0; значит, либо х = 0, либо ах + b= 0. В итоге получается два корня: x1 = 0; x2 = -
3) если уравнение имеет вид ах2 + с = 0, то его преобразуют к виду
ах2 = - с и далее х2. = -
На втором этапе осуществляется переход к решению полного квадратного уравнения. Это уравнения вида ах2 + bx+ c= 0, где a,b,c - заданные числа, а ≠ 0, х - неизвестное.
Любое полное квадратное уравнение можно преобразовать к виду
1. Если D< 0, то квадратное уравнение ах2 + bx+ c= 0, где а ≠ 0 не имеет действительных корней. Например, 2х2+ 4х + 7 = 0. Решение: здесь а = 2, b= 4, с = 7. D= b2 - 4ас = 42 -
2. Если D= 0, то квадратное уравнение ах2 + bx+ c= 0, где а ≠ 0, имеет два равных корня, которые находятся по формуле
Например, 4х
3. Если D> 0, то квадратное уравнение ах2 + bx+ c= 0, где а ≠ 0 имеет два корня, которые находятся по формулам:
Например, 3х2+ 8х - 11 = 0. Решение: а = 3,b= 8, с = - 11. D= b2 - 4ас = 82 -
Составляется алгоритм решения уравнения вида ах2 + bx+ c= 0.
1. Вычислить дискриминант Dпо формуле D= b2 - 4ас.
2. Если D< 0, то квадратное уравнение ах2 + bx+ c= 0 не имеет корней.
3. Если D= 0, то квадратное уравнение имеет два равных корня, который находятся по формуле
4. Если D> 0, то квадратное уравнение ах2 + bx+ c= 0 имеет два корня:
Это алгоритм универсален, он применим как к неполным, так и к полным квадратным уравнениям. Однако неполные квадратные уравнения обычно по этому алгоритму не решают.
Математики - люди практичные, экономные, поэтому пользуются формулой:
Итак, можно сделать вывод, что квадратные уравнения можно решать подробно, используя сформулированное выше правило; можно - записать сразу формулу (2) и с ее помощью делать необходимые выводы [1,98].
На третьем этапе рассматриваются приведенные квадратные уравнения, которые имеют вид х2+px+ q= 0 (3), где pи q - данные числа. Число p - коэффициент при х, а q - свободный член.
Дискриминант уравнения равен: D= p2 - 4q. Приведенные квадратные уравнения получаются из полного квадратного уравнения следующим образом:
Где
Рассматривают 3 случая:
1. D> 0, тогда уравнение (3) имеет два корня, вычисляемые по формуле
(Приложение 1) (4)
2. D= 0, тогда уравнение (3) имеет единственный корень, или, как говорят, два совпадающих корня:
3. D< 0, то уравнение не имеет корней. Обычно в случае приведенного квадратного уравнения (3) вместо Dрассматривается выражение
Отсюда следует, что:
1) если
2) если
3) если
Важным моментом в изучении квадратных уравнений является рассмотрение теоремы Виета, которая утверждает наличие зависимости между корнями и коэффициентами приведенного квадратного уравнения [23,17].
Теорема Виета. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. (Приложение 2)
Иначе говоря, если x1 и x2 - корни уравнения х2+px+ q= 0, то
|
x1 + x2 = - p,
x1 x2 = q. (5)
Данные формулы называют формулами Виета в честь французского математика Ф. Виета (1540-1603), (Приложение 3) который ввел систему алгебраических символов, разработал основы элементарной алгебры. Он был одним из первых, кто числа стал обозначать буквами, что существенно развило теорию уравнений.
Например, приведенное уравнение х2 - 7х +10 = 0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Видно, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
Справедлива также теорема, обратная теореме Виета.
Теорема, обратная теореме Виета. Если для чисел x1, x2, p, qсправедливы формулы (5), то x1 и x2 - корни уравнения х2+ px+ q= 0 [2,49].
Теорема Виета и теорема, обратная ей, часто применяются при решении различных задач.
Например. Напишем приведенное квадратное уравнение, корнями которого являются числа 1 и - 3.
По формулам Виета
p= x1 + x2 = - 2, q= x1 x2 = - 3.
Следовательно, искомое уравнение имеет вид х2 + 2х - 3 = 0.
Сложность освоения теоремы Виета связана с несколькими обстоятельствами. Прежде всего, требуется учитывать различие прямой и обратной теоремы. В прямой теореме Виета даны квадратное уравнение и его корни; в обратной - только два числа, а квадратное уравнение появляется в заключении теоремы. Учащиеся часто совершают ошибку, обосновывая свои рассуждения неверной ссылкой на прямую или обратную теорему Виета.
Например, при нахождении корней квадратного уравнения подбором ссылаться нужно на обратную теорему Виета, а не на прямую, как часто делают учащиеся. Для того чтобы распространить теоремы Виета на случай нулевого дискриминанта, приходится условиться, что в этом случае квадратное уравнение имеет два равных корня. Удобство такого соглашения проявляется при разложении квадратного трехчлена на множители