Наличие учащихся теоретико-множественных представлений позволит им проследить полную аналогию между операциями над множествами операциями над событиями. Теория вероятностей дает возможность ученикам увидеть, что объекты отношения этом разделе математики фактически те же, что теории множеств. Разница заключается лишь терминологии, языке, используемом теории вероятностей. Полезно составить таблицу соответствия между терминами теории множеств терминами теории вероятностей.
Следует отметить, что уверенное владение учащимися навыками по работе с операциями над событиями и умение использовать основные свойства этих операций важны для развития навыков решения задач по курсу теории вероятностей. Одна из важнейших проблем, рассматриваемая теории вероятностей определение вероятности сложных событий, получаемых из простых использованием операций над событиями. Кроме этого, изучение операций над событиями актуально для случаев, когда вероятностное пространство имеет достаточно большое число элементов решение задач его использованием приводит громоздким вычислениям. Эти положения можно считать основой мотивации изучения операций над событиями.
Изучение операций над событиями желательно сопровождать примерами, которые достаточно наглядно отражают не только сущность самой изучаемой операции, но различие этих операциях. Как правило, ученики достаточно легко по определению построят сумму, произведение событий.
Труднее сформировать понимание сущности операций над событиями. Например, после введения определений операций суммы произведения событий рассмотрения соответствующих примеров, можно предложить ученикам следующее задание.
Пример: по самолету стреляют два зенитно-ракетных комплекса (ЗРК) Самолет сбит, когда в него попал хотя бы один снаряд неважно какого ЗРК, первого или второго (это естественно, совсем необязательно, чтобы самолет попали оба ЗРК) Пусть событие самолет сбит первым ЗРК, событие самолет сбит вторым ЗРК. Событие самолет сбит.
Ставя перед учениками проблему, что представляет собой событие учитель активизирует деятельность учащихся. Эта задача приводит учеников рассуждению возможности события как суммы событий (= возможности события как произведения событий Аи (Для учащихся, очевидно, что качестве решения задачи, прежде всего, является именно сумма событий, не их произведение, так как есть четкое понимание того, что самолет будет сбит случае, когда хотя бы один ЗРК него попал. Кроме этого, становится интуитивно ясно, что вероятность события, что самолет попадут оба ЗРК, много меньше, чем вероятность попадания него каждым ЗРК отдельности.
Методической проблемой при изучении этой темы процессе решения задач можно считать обучение процедуре выделения простых событий.
Разрешение этой проблемы приходит результате накопления опыта решения задач.
Отбор системы задач по этой теме желательно осуществить так, чтобы позже использовать их для решения задач по вычислению вероятности сложного события по известным вероятностям простых событий.
Изученные операции над событиями должны привести к более глубокому осмыслению учащимися таких понятий, как «пространство элементарных событий» «несовместные события» «достоверные события» «невозможные события» «противоположные события» так как эти понятия могут быть определены на основе операции над событиями.
Далее, после изучения операций над событиями свойств изучаются элементы комбинаторики основы дл вычисления вероятностей событий широком классе вероятностных схем. Элементы методики изучения комбинаторики школьном курсе математики достаточно подробно разработаны, так как этот раздел изучался школьном курсе математики. настоящее время происходит возврат разделу комбинаторики, так как он востребован потребностями дискретной математики, широко применяемой в различных областях знания, например информатики.
Тема «Элементы комбинаторики» может изучаться изучения темы «Теория вероятностей» так как она содержательно богата как теоретическом, так прикладном аспектах.
Второе фундаментальное понятие теории вероятностей это понятие «вероятности» Это понятие является основой построения всех схем вероятностного характера, описывающих широкий класс случайных явлений.
Формирование этого понятия, так же как понятия «события» начинается преодоления противоречия между субъектным опытом ученика употребления им термина «вероятность» повседневной практике смыслом, вкладываемым определение этого понятия математике.
Настоящее время существует несколько определений понятия «вероятности события» статистическое, аксиоматическое, классическое, субъективное (на основе экспертных оценок) Можно сказать, что формирование понятия «вероятности» происходит настоящее время. Философский подход определению вероятности как «примеры объективной возможности наступления (или не наступления) некоторого события» для математики неприемлем силу весьма его размытого характера. Неприемлемо это определение для реализации целей обучения теории вероятностей школьном курсе математики.
В качестве примеров определения вероятностей событий на основе классического определения вероятности можно рассмотреть задания на вычисление вероятности выпадения «орла» или «решки» при бросании симметричной монеты, рождения мальчика или девочки.
Формирование понятия «вероятности» может быть осуществлено несколько этапов. Сначала, реализуя принцип историзма обучении, рассматривается классическое определение понятия вероятности. Вероятностью события называется отношение числа случаев, благоприятствующих событию общему числу исходов Это определение, являясь конструктивным, дает способ вычисления вероятности события формулируется для так называемых классических экспериментов. Эксперимент называется классическим, если результате его проведения реализуется множество событий, удовлетворяющих следующим условиям:
• все события равновозможны;
• они попарно несовместны;
• образуют полную группу событий.
Исторически такие события назывались шансами, случаями, исходами, речь шла о рассматриваемых ранее основных вероятностных моделях подбрасывание игральной кости, извлечение шаров из урны, извлечение карт из колоды, стрельба по мишени.
Можно проверить, что введенное таким образом определение вероятности обладает следующими свойствами:
• (= вероятность достоверного события равна так как
• (= вероятность невозможного события равна так как вероятность принимает значения из промежутка [; так всегда то из следует
• (+ (+( если события несовместны.
Это свойство можно обосновать. Пусть результате проведения серии экспериментов событие произошло m1раз, событие m2. Так как события несовместны, то сумма событий произошла m1+m2 раз. Тогда получаем, что
В качестве примеров определения вероятностей событий на основе классического определения вероятности можно рассмотреть задания на вычисление вероятности выпадения «орла» или «решки» при бросании симметричной монеты, рождения мальчика или девочки например, такое, которое используется дальнейшем при изучении теорем сложения.
Одним из существенных недостатков классического определения вероятности является то, что оно пригодно толы для классических экспериментов, которые редко имеют место повседневной практике. Важно добиться от учащихся четкого понимания того факта, что введенное выше определение вероятности обслуживает весьма узкий класс явлений рамках классических экспериментов) его, вообще говоря, недостаточно, поэтому возникает необходимость рассмотрения других подходов определению понятия вероятности [10, 396]
После изучения методики преподавания теории вероятностей необходимо рассмотреть, используются ли задачи по теме на уроках математики классе.
Методика изучения основных теорем теории вероятностей:
основным теоремам теории вероятностей относятся теоремы сложения вероятностей следствия из них теорема умножения вероятностей. Изучение теорем желательно вести использованием примеров, иллюстрирующих их применение.
В случае если события несовместные исходы одном том же испытании, то для них имеет место теореме сложения вероятностей: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий. Следует подчеркнуть, что это утверждение имеет статус теоремы только для классического эксперимента. общем случае, при аксиоматическом построении теории вероятностей, оно выступает качестве аксиомы.
Это утверждение допускает два важных обобщения:
если события А1 А2, Аn— несовместны, то
(A1,A2,,Аn) (А1) (А2) (Аn) если два события совместны, то
( ( ( (АВ) сумма вероятностей несовместных событий, образующих полную группу событий, равна единице:
(А1) (А2) (Аn) сумма вероятностей противоположных событий равнаединице,
Из этой формулы можно получить следствие вероятности противоположного события поизвестной вероятности.
Теорема сложения вероятностей для случая совместных событий может рассматриваться как основа мотивации изучения теоремы умножения вероятностей. Действительно, формуле, выражающей математическую формулировку теоремы вероятности двух несовместных событий, имеется слагаемое (АВ) которое не выражено через вероятности ( ( ( ( ( (АВ)