Учебник алгебры под редакцией С.А. Теляковского предназначен для традиционной системы обучения. Состоит из 6 глав, которые делятся на параграфы. На полях рядом с объяснительным текстом даются условные обозначения: розовым квадратом отмечается текст, который нужно запомнить; серым квадратом отмечается материал, который важно знать; красным треугольником отмечается начало решения задачи; белым треугольником отмечается окончание решения задачи; красным кружком отмечается начало обоснования утверждения или вывода формулы; белым кружком отмечается окончание обоснования или вывода; отмечены задания обязательного уровня, для домашней работы, трудные задачи. Ключевые, важные слова выделены курсивом. После каждой главы предусмотрены дополнительные упражнения. Есть рубрика "Задачи повышенной трудности". В учебнике есть исторические сведения, краткие исторические справки, портреты ученых.
Учебник алгебрыНикольского С.М. предназначен для традиционной системы обучения. Состоит из 3 глав, которые подразделяются на 10 параграфов, параграфы делятся на подпункты. На полях рядом с объяснительным текстом даются условные обозначения: белым кружком отмечаются наиболее легкие задания, предназначенные для устной работы; звездочкой отмечаются задания повышенной трудности. Ключевые, важные слова выделены жирным шрифтом. После каждого подпункта предусмотрены вопросы и задания. Главы заканчиваются дополнительным материалом, в котором приводятся "Исторические сведения" и "Задания для повторения", содержащие много вычислительных упражнений и текстовых задач. В учебнике есть портреты ученых.
Учебник алгебры Башмакова М.И. предназначен для традиционной системы обучения. Состоит из 8 параграфов, которые делятся на 52 урока и 8 бесед. Теоретический текст урока и основные задания к этому уроку записаны на 2 соседних страницах, на "левых" страницах урока приводится главное знание. На это обращает внимание профессор с указкой. Когда около рамки с информацией профессор поднимает руку, то это означает, что он что-то советует или что-нибудь разъясняет. На "правых" страницах урока находятся задания. После каждого параграфа предусмотрена беседа и рубрика "Отвечаем на вопросы". В беседах находится дополнительный интересный материал по теме параграфа. В каждой беседе есть несколько интересных задач, упражнений и вопросов. Учебник содержит много учебных заданий (тренажеры, тесты, игры, сюжеты, серии, исследовательские работы и др.) позволяющих усилить индивидуализацию обучения, повысить познавательный интерес к алгебре. В учебнике есть исторические сведения, портреты ученых.
Учебник алгебры Алимова Ш.А. предназначен для традиционной системы обучения. Состоит из 7 глав, которые делятся на параграфы. На полях рядом с объяснительным текстом даются условные обозначения: прямоугольником отмечается текст, который нужно запомнить; оранжевым треугольником отмечается начало решения задачи; белым треугольником отмечается окончание решения задачи; оранжевым кружком отмечается начало обоснования утверждения или вывода формулы; белым кружком отмечается окончание обоснования или вывода; звездочкой отмечается дополнительный более сложный материал; отмечены обязательные задачи; дополнительные более трудные задачи; трудные задачи; занимательные задачи. Ключевые, важные слова выделены курсивом. После каждой главы предусмотрены упражнения. Есть рубрика "Задачи для внеклассной работы". В учебнике нет исторических сведений, портретов ученых.
Учебник алгебры Дорофеева Г.В. предназначен для традиционной системы обучения. Состоит из 9 глав, которые делятся на параграфы. На полях рядом с объяснительным текстом нет условных обозначений. Ключевые, важные слова выделены курсивом и жирным шрифтом. После каждой главы предусмотрены дополнительные задания, вопросы для повторения, задания для самопроверки, тест. В учебнике нет исторических сведений, портретов ученых.
Пробный урок алгебры в 7 классе, МОУ "Кыласовская СОШ"
Тема: Разложение многочленов на множители с помощью формул сокращенного умножения
Цели: - повторить формулы сокращенного умножения;
отрабатывать навыки рациональных вычислений;
развивать математическую речь, активность, внимание, навыки
самостоятельности;
воспитывать аккуратность, интерес к предмету.
Оборудование: портрет Евклида.
Ход урока:
1. Сообщение темы и целей урока.
2. Повторение пройденного материала.
2.1 Математический диктант.
2.1.1 Напишите формулу разности кубов
a3 - b3 = (a - b) (a2 + ab+ b2)
2.1.2 Напишите формулу суммы кубов
a3 + b3 = (a+ b) (a2 - ab+ b2)
2.1.3 Напишите формулу квадрата разности
(a - b) 2 = a2 - 2ab+ b2
2.1.4 Напишите формулу квадрата суммы
(a+ b) 2 = a2 + 2ab+ b2
3. Исторический экскурс о Евклиде.
Евклид (IIIв. до н.э.)
Выдающийся древнегреческий математик. Евклид жил в Александрии, но сведений из его жизни известно очень мало, мы не знаем точно даже даты его рождения и смерти. Зато каждому школьнику с младших классов известно его имя. Основным его сочинением являются "Начала". "Началами" в то время назывались сочинения, где излагались аксиоматические системы математики. Известны авторы других "Начал", однако широкую известность и применение получили сочинения Евклида. И сейчас геометрию, изучаемую в средней школе, называют Евклидовой.
"Начала" Евклида состоят из 13 книг. В первой книге изложены определения, аксиомы и постулаты. У Евклида аксиомы - предложения, вводящие отношения равенства или неравенства величин. Постулаты - утверждения о возможности построений. Первые шесть книг посвящены планиметрии. Следующие три книги содержат некоторый эквивалент теории рациональных чисел, эти книги называют "арифметическими". Десятая книга содержит классификацию всех возможных видов биквадратных иррациональностей, способ нахождения неограниченного числа "пифагоровых троек" целых чисел. Последние три книги посвящены стереометрии.