Смекни!
smekni.com

Формування та розвиток математичних здібностей (стр. 4 из 8)

б) як учбові здібності − здібності до вивчення (навчанню, засвоєнню) математики (в даному випадку шкільного курсу математики), швидкого і успішного оволодіння відповідними знаннями, уміннями, навиками.

Зрозуміло, якщо розглядати питання в загальному плані, то можна сказати, що здібності в порівнянні з уміннями і навиками в більшості випадків формуються і змінюються повільніше, насилу, є стійкішими утвореннями. Але ставити цей принцип в основу розрізнення вказаних категорій все-таки неможливо, оскільки розрізнення по параметрах «більше - менше», «швидше - повільніше» абсолютно беззмістовно і якісно невизначено.

У дослідженні математичних здібностей виходити з іншого розуміння істоти здібностей і умінь, навиків. Початковим при цьому був факт, що при аналізі здібностей завжди мають на увазіякості, особливості людини, що виконує ту або іншу діяльність, а при аналізі умінь і навиків − якості, особливості діяльності, яку здійснює людина. У основі визначення поняття «здатність» в будь-якому радянському підручнику психології, майже в будь-якій праці, що стосується психології здібностей, завжди лежить характеристика індивідуально-психологічних особливостей людини. З іншого боку, всі визначення навиків, умінь виходять з поняття дії

Здібності - це не навики і уміння, а ті індивідуально-психологічні особливості, від яких заві легке і успішне оволодіння уміннями і навиками у відповідній діяльності.

Загальна схема структури математичних здібностей в шкільному віці представляється таким чином (розглядати її будемо, як і раніше, виходячи з основних етапів вирішення завдань):

1. Отримання математичної інформації

а) Здібність до формалізованого сприйняття математичного матеріалу, схоплювання формальної структури завдання.

2. Переробка математичної інформації

а) Здібність до логічного мислення у сфері кількісних і просторових стосунків, числовою і знаковою символіки. Здатність мислити математичними символами.

б) Здібність до швидкого і широкого узагальнення математичних об'єктів, стосунків і дій.

в) Здібність до згортання процесу математичного, міркування і системи відповідних дій. Здатність мислити згорнутими структурами

г) Гнучкість розумових процесів в математичній діяльності

д) Прагнення до ясності, простоти, економності ірраціональності рішень.

е) Здібність до швидкої скованої перебудови спрямованості розумового процесу перемиканню з прямого на зворотний хід думки (оборотність розумового процесу при математичному міркуванні).

3. Зберігання математичної інформації

а) Математична пам'ять (узагальнена пам'ять на, математичні стосунки, типові характеристики, схеми і доказів, методи вирішення завдань і принципи підходу до них.)

4. Загальний синтетичний компонент

а) Математична спрямованість розуму.

Виділені компоненти тісно зв'язані, впливають один на одного і утворюють в своїй сукупності єдину систему, цілісну структуру, своєрідний синдром математичної обдарованості, математичний склад розуму.

Не входять в структуру математичної обдарованості .те компоненти, наявність яких в цій структурі не обов'язково (хоча і корисно). У цьому сенсі вони є нейтральними по відношенню до математичної обдарованості. Проте їх наявність або відсутність в структурі (точніше, ступінь розвитку) визначають тип математичного складу розуму. Не є обов'язковими в структурі математичної обдарованості наступні компоненти:

Швидкість розумових процесів як тимчасова характеристика. Індивідуальний темп роботи не грає вирішального значення. Математик може роздумувати неквапливо, навіть поволі, але дуже докладно і глибоко.

Обчислювальні здібності (здібності до швидких і точних обчислень, часто в думці). Відомо, що є люди, здатні проводити в думці складні математичні обчислення (майже миттєве зведення в квадрат і куб тризначних чисел, витягання кубічного кореня з шестизначних чисел), але не уміючі вирішити скільки-небудь складного завдання. Відомо також, що існували і існують феноменальні «лічильники», не що дали математиці нічого, а видатний французький математик А. Пуанкаре писав про себе, що без помилки не може зробити навіть додавання.

Пам'ять на цифри, числа, формули. Як указував академік А. Н. Колмогоров, багато видатних математиків не володіли видатною пам'яттю такого роду.

Здібність до просторових уявлень.

Здатність наочно представити абстрактні математичні стосунки і залежності.

Слід підкреслити, що схема структури математичних здібностей має на увазі математичні здібності школяра. Не можна заздалегідь, до спеціального вивчення, сказати, якою мірою її можна вважати за загальну схему структури математичних здібностей, якою мірою її можна віднести до обдарованих математиків, що цілком склалися.

Зрозуміло, конкретний зміст структури здібностей неабиякою мірою залежить від методів навчання, оскільки вона складається в процесі навчання. Але встановлені нами компоненти за всіх умов повинні входити в цю структуру. Неможливе прсдставіть наприклад, щоб при якій-небудь системі навчання здібність до узагальнення або математична пам'ять не входили в структуру математичних здібностей.

Аналізуючи схему структури математичної обдарованості, ми можемо відмітити, що певні моменти в характеристиці перцептивні, інтелектуальні і мнемічні сторони математичної діяльності мають загальне значення. Наприклад, формалізоване сприйняття завдання − це сприйняття узагальнене, згорнуте, гнучке; математична пам'ять − це пам'ять на узагальнені, згорнуті і гнучкі системи. Якщо ми говоримо про формалізоване (узагальненому) сприйняття умов завдання, то можна говорити і про формалізоване (узагальненому) рішення, про формалізоване (узагальненому) запам'ятовування. Тому розгорнену схему структури можна представити і в іншій, надзвичайно стислій формулі: математична обдарованість характеризується узагальненим, згорнутим і гнучким мисленням у сфері математичних стосунків, числової і знакової символіки і математичним складом розуму. Ця особливість математичного мислення приводить до збільшення швидкості переробки математичної інформації і, отже, економії нервово-психічних сил. В термінах асоціативної теорії це звучало б так: математичні здібності − це здібності до освіти на математичному матеріалі узагальнених, згорнутих, гнучких, і оборотних асоціацій і їх систем. Вказані здібності різною мірою виражені у здібних, середніх і нездібних учнів. У здатних за деяких умов такі асоціації утворюються «з місця», при мінімальній кількості вправ. У нездібних же вони утворюються з надзвичайною працею. Для середніх же що вчаться необхідною умовою поступового утворення таких асоціацій є система спеціально організованих вправ, тренування. Провівши первинний аналіз математичних, здібностей, отримавши уявлення про їх структуру, ми не вважаємо що на цьому дослідження компонентів математичних здібностей може бути закінчене. Необхідне поглиблення вивчення кожного компоненту з метою проникнути в його природу; виявити його фізіологічні основи.

2.2 Вікові особливості формування та розвитку математичних здібностей

У зарубіжній психології до нашого часу широко розповсюджено представлення про вікові особливості математичного розвитку школяра, які виходять з різних досліджень Ж. Піаже. В той час, як відомо, Піаже вважав, що дитина тільки до 12 років стає здатною до абстрактного мислення. Аналізуючи стадії розвитку математичного мислення підлітка, Л. Жоанно прийшов до висновку, що в наглядно-конкретному плані школяр мислить до 12 – 13 років, а мислення в плані формальної алгебри (пов’язане з володінням операціями, символами) складається лише до 17 років.

Ф. Отіа в своїй роботі також доводить, що лише з 11 – 12 років дитина починає проявляти в математиці здатність до абстракції і починає міркувати в відвернутою формі.

Дослідження радянських психологів дають зовсім інші результати. Ще П.П. Булонський писав про інтенсивний розвиток у підлітка (11 – 14 років) узагальнювального і абстрактного мислення, вміння доводити і розбиратися в доведеннях.

Останнім часом було проведено ряд досліджень деяких вікових особливостей математичного мислення школярів, в тому числі дослідження А.В. Скрипченко, О.Я. Лихачової, А.А. Бодалева. Л.Н. Проколієнко виявив деякі особливості мислення підлітка і старшого школяра в процесі розв’язування геометричних задач. Але виявляється, що Л.Н. Проколієнко дуже чітко визначив рамки віку, ігноруючи при цьому індивідуальні відмінності, - не одразу можна погодитись з таким різким поділом: учні 6-го класу відрізняються репродуктивним підходом до розв’язку задач, а 7-го класу – творчим; учні 9-го класу міркують індуктивним способом і їх мислення розвернене, а учні 10-го класу частіше використовують дедуктивний метод і міркують в скороченій формі.

Вчені досліджували розвиток математичних здібностей протягом всього періоду шкільного навчання від молодшого до старшого шкільного віку. Були досліджені вікові особливості структури математичних здібностей, специфіка прояву формуючих компонентів на різних вікових етапах в молодшому, середньому і старшому шкільному віці під впливом шкільного навчання.

Виникає запитання: в якій мірі можна говорити про математичні здібності по відношенню до учнів 1 – 2 – 3 класів?

Дослідження І.В. Дубровіної, дають можливість відповісти на це запитання наступним чином. Звичайно, не враховуючи випадки особливої обдарованості, не можна говорити про скільки-небудь сформованої структурі математичних здібностей саме для цього віку. Тому поняття «математичні здібності» умовно у застосуванні до молодших школярів – дітей 8 – 10 років, і при дослідженні компонентів математичних здібностей в цьому віці мова може йти лише про елементарні форми таких компонентів. Але окремі компоненти математичних здібностей формуються вже у початкових класах. Звичайно, вікові особливості розвитку математичних здібностей вивчались на основній масі середніх і здібних учнях. При цьому потрібно відмітити, що індивідуальні відмінності у вікових межах (особливо, якщо порівнювати найбільш сильних і найбільш слабких учнів) виявлялись значно помітними.