Смекни!
smekni.com

Методика ознайомлення дітей молодшого дошкільного віку з величиною предметів (стр. 4 из 6)

Мета - розвиток пізнавальних і творчих здібностей дітей (особистісний розвиток).

Зміст класичний:

- Порівняння - рахунок

- Зрівняння - вимірювання

- Комплектування - обчислення плюс елементи логіки і математики.

Методи і прийоми:

- Практичні (ігрові);

- Експериментування;

- Моделювання;

- Відтворення;

- Перетворення;

- Конструювання.

Дидактичні засоби:

Наочний матеріал (книги, комп'ютер):

- Блоки Дьенеша,

- Палички Кюїзенера,

- Моделі.

Форма організації дитячої діяльності:

- Індивідуально-творча діяльність,

- Творча діяльність в малій підгрупі (3-6 дітей),

- Навчально-ігрова діяльність (пізнавальні ігри, заняття),

- Ігровий тренінг.

Все це спирається на розвиваюче середовище, яку можна побудувати наступним чином:

1. Математичні розваги:

- Ігри на площинне моделювання (Піфагор, Танграм і т.д.),

- Ігри головоломки,

- Завдання-жарти,

- Кросворди,

- Ребуси.

2. Дидактичні ігри:

- Сенсорні,

- Моделюючого характеру,

- Спеціально придумані педагогами для навчання дітей.

3. Розвиваючі ігри - це ігри, що сприяють рішенню розумових здібностей. Ігри грунтуються на моделюванні, процесі пошуку рішень. Нікітін, Минскин «Від гри до знань» [9, 32].

Вихователь повинен знати не тільки як навчати дошкільників, але і те, чого він їх навчає, тобто йому повинна бути ясна математична сутність тих уявлень, які він формує у дітей. Широке використання спеціальних навчальних ігор так само важливо для пробудження у дошкільнят інтересу до математичних знань, вдосконалення пізнавальної діяльності, загального розумового розвитку.

Виділившись з дошкільної педагогіки методика формування елементарних математичних уявлень стала самостійною науковою та навчальною областю. Предметом її дослідження є вивчення основних закономірностей процесу формування елементарних математичних уявлень у дошкільників в умовах суспільного виховання. Коло завдань, що вирішуються методикою, досить великий:

- Наукове обгрунтування програмних вимог до рівня розвитку кількісних, просторових, тимчасових і інших математичних уявлень дітей у кожній віковій групі;

- Визначення змісту матеріалу для підготовки дитини в дитячому саду до засвоєння математики в школі;

- Вдосконалення матеріалу з формування математичних уявлень у програмі дитячого саду;

- Розробка та впровадження в практику ефективних дидактичних засобів, методів і різноманітних форм і організація процесу розвитку елементарних математичних уявлень;

- Реалізація наступності у формуванні основних математичних уявлень в дитячому садку і відповідних понять у школі:

- Розробка змісту підготовки висококваліфікованих кадрів, здатних здійснювати педагогічну та методичну роботу з формування і розвитку математичних уявлень у дітей в усіх ланках системи дошкільного виховання;

- Розробка на науковій основі методичних рекомендацій батькам щодо розвитку математичних уявлень у дітей в умовах сім'ї.

Теоретичну базу методики формування елементарних математичних уявлень у дошкільників складають не лише загальні, принципові, вихідні положення філософії, педагогіки, психології, математики та інших наук. Як система педагогічних знань вона має і свою власну теорію, і свої джерела. До останніх відносяться:

- Наукові дослідження та публікації в яких відображені основні результати наукових пошуків (статті, монографії, збірники наукових праць і т.д.);

- Програмно-інструктивні документи ("Програма виховання і навчання в дитячому садку", методичні вказівки і т.д.);

- Методична література (статті в спеціалізованих журналах, наприклад, в "Дошкільне виховання", посібники для вихователів дитячого саду і батьків, збірники ігор і вправи, методичні рекомендації тощо);

- Передовий колективний та індивідуальний педагогічний досвід з формування елементарних математичних уявлень у дітей в дитячому садку і сім'ї, досвід та ідеї педагогів-новаторів [8, 102].

Методика формування елементарних математичних уявлень у дітей постійно розвивається, вдосконалюється і збагачується результатами наукових досліджень і передового педагогічного досвіду.

В даний час завдяки зусиллям вчених і практиків створено, успішно функціонує і вдосконалюється науково-обгрунтована методична система з розвитку математичних уявлень у дітей. Її основні елементи - мета, зміст, методи, засоби і форми організації роботи - найтіснішим чином пов'язані між собою і взаємообумовлюють один одного.

Провідним і визначальним серед них є мета, так як вона веде до виконання соціального замовлення суспільства дитячим садом, готуючи дітей до вивчення основ наук (у тому числі і математики) в школі.

Навчання веде за собою розвиток. В умовах раціонально побудованого навчання, враховуючи вікові можливості дошкільнят, можна сформувати у них повноцінні уявлення про окремі математичні поняття. Навчання при цьому розглядається як неодмінна умова розвитку, яке у свою чергу стає керованим процесом, пов'язаним з активним формуванням математичних уявлень і логічних операцій. При такому підході не ігнорується стихійний досвід та його вплив на розвиток дитини, але провідна роль відводиться цілеспрямованому навчанню.

Під математичним розвитком слід розуміти зрушення і зміни у пізнавальній діяльності особистості, які відбуваються в результаті формування математичних уявлень і пов'язаних з ними логічних операцій. Формування математичних уявлень - це цілеспрямований і організований процес передачі і засвоєння знань, прийомів і способів розумової діяльності, передбачених програмними вимогами. Основна його мета - не лише підготовка до успішного оволодіння математикою в школі, а й всебічний розвиток дітей.

Таким чином, наука математичного розвитку у світлі сучасних вимог змінилася, стала більш орієнтованою на розвиток особистості дитини, розвиток пізнавальних знань, охорону його фізичного і психічного здоров'я. Якщо при навчально-дисциплінарному підході виховання вона зводиться до виправлення поведінки або попередження можливих відхилень від правил за допомогою «навіювань», то особистісно-орієнтована модель взаємодії дорослого з дитиною виходить з кардинально іншого трактування процесів виховання: виховувати - значить прилучати дитини до світу людських цінностей.

Перше заняття: Розмір предметів: по довжині (довгий, короткий); по висоті (високий, низький); по ширині (широкий, вузький); по товщині (товстий, тонкий); за масою (важкий, легкий); за глибиною (глибокий, дрібний); за обсягом (великий, маленький).

Ігровий матеріал: набір карток з зображенням геометричних форм.

1. Дорослий називає який-небудь предмет навколишнього оточення, а дитина показує картку з геометричною формою, відповідною формою названого предмета.

2. Дорослий називає предмет, а дитина словесно визначає його форму. Наприклад, косинка-трикутник, яйце-овал і т.д.

3. Дорослий показує картинку з предметом, діти визначають словесно за массою [5, 34].

Друге заняття: Геометричні фігури і тіла: коло, квадрат, трикутник, овал, прямокутник, куля, куб, циліндр.

Ігровий матеріал: набір геометричних форм. За допомогою геометричних форм викласти складні картинки.

Третє заняття: Структурні елементи геометричних фігур: сторона, кут, їх кількість.

Ігровий матеріал: ілюстрація з геометричним зображенням порваних килимків. Знайти підходящу (за формою і кольором) латочку і "полагодити" (накласти) її на дірку.

Четверте заняття: Форма предметів: круглий, трикутний, квадратний. Логічні зв'язки між групами величин, форм: низькі, але товсті; знайти спільне та відмінне в групах фігур круглої, квадратної, трикутної форм.

Ігровий матеріал- іграшки, кубики різної величини, м'ячі, пірамідки.

Основне завдання даних занять-пізнавальні та мовні вміння. Цілеспрямовано зорово і руховим способом обстежити геометричні фігури, предмети з метою визначення форми. Попарно порівнювати геометричні фігури з метою виділення структурних елементів: кутів, сторін, їх кількості. Самостійно знаходити і застосовувати спосіб визначення форми, розмір предметів, геометричних фігур. Самостійно називати властивості предметів, геометричних фігур; висловлювати у мові спосіб визначення таких властивостей, як форма, розмір; групувати їх за ознаками. Просторові відношення в парних напрямках від себе, від інших об'єктів, в русі в зазначеному напрямку; тимчасові - в послідовності частин доби, сьогодення, минулому і майбутньому часі: сьогодні, вчора і завтра.

Узагальнення 3-5 предметів, звуків, рух по властивостях - розміром, кількістю, формою та ін

Пізнавальні та мовні вміння. Порівнювати предмети на-віч, шляхом накладення, додатки. Висловлювати в мові кількісні, просторові, тимчасові відносини між предметами, пояснити послідовне збільшення і зменшення їх за кількістю, розміром.

П'ятирічки проявляють високу пізнавальну активність, вони буквально закидають старших різноманітними питаннями про навколишній світ. Досліджуючи предмети, їх властивості та якості, діти користуються різноманітними діями.

Діти радіють своїм досягненням і новим можливостям. Вони націлені на творчі прояви та доброзичливе ставлення до оточуючих. Індивідуальний підхід вихователя допоможе кожній дитині проявити свої вміння та схильності у різноманітній захоплюючій діяльності.

Формуючі заняття передбачають розробку системи математичного розвитку дітей 4-5 років у контексті різних видів діяльності. При проведенні формуючого заняття вирішувалися наступні завдання:

- Створити розвиваюче середовище; визначити найбільш оптимальний підхід для дітей 4-5 років;

- Скласти систему ігор;

- Експериментально випробувати вплив розробленої системи ігор на формування математичних уявлень.