Смекни!
smekni.com

Формирование технических знаний на уроках технологии (стр. 6 из 9)

Преимущественно практический характер содержания трудового обучения вовсе не означает, что внимание к формированию у школьников теоретических знаний должно быть ослаблено. Речь должна идти о другом: как за небольшое время сформировать у учащихся полноценные и прочные знания по технике, технологии, организации и экономике производства. Задача состоит в том, чтобы учащиеся достигли такого уровня усвоения знаний, при котором они могли бы применить их творчески при выполнении практических работ. Только в этом случае трудовое обучение действительно будет служить развитию учащихся, пробуждать у них творческую мысль в процессе применения знаний. Экономию же учебного времени можно и нужно достигать при умелом применении учителем меж предметных связей. Тогда, опираясь на знания, полученные учащимися по основам наук, например физике, можно сразу перейти ко второму и даже третьему этапу усвоения знаний по технике и технологии.

Вот почему учитель должен тщательно анализировать требования учебной программы и на этой основе отбирать для усвоения учащимися необходимые и достаточные знания. При этом надо учитывать, что знания бывают различных видов: знания терминов и понятий, фактов, законов, теории, методологические знания, оценочные знания. Все эти виды знаний в определенном соотношении отражены в учебных программах по трудовому обучению. Особенно большое место в трудовом обучении занимают термины и понятия, факты, а также оценочные знания.

Термины и понятия составляют собственно ту основу, с помощью которой усваиваются другие знания. Пользуясь учебной программой и учебным пособием, можно четко установить перечень и объём терминов и понятий, подлежащих усвоению школьниками в данном классе при изучении данного вида труда, а значит, успешнее спланировать учебный процесс, рассчитать количество упражнений и других самостоятельных работ учащихся, необходимых для реализации этой учебной цели.

Без знания фактов невозможно усвоить никакие другие знания. В трудовом обучении в качестве изучаемых фактов чаще всего выступают конкретные примеры, отражающие изучаемую действительность-объекты техники, технологические процессы, технико-технологическая документация и т.д. В определенной мере перечень и объем фактов установлен учебной программой. Однако в конечном итоге только учитель, исходя из конкретных условий проведения занятий с учащимися, может определить необходимое и достаточное количество фактов. К сожалению, бывает так, что учителю хочется побольше рассказать ученикам и он приводит на уроке излишние факты, а это, естественно, перегружает учащихся и приводит к неоправданной затрате учебного времени. Например, давая понятие о деталях и их соединениях в V классе, не надобности приводить примеры множества различных деталей и способов их соединений; достаточно ограничиться двумя-тремя конкретными фактами, совершенно необходимыми для того, чтобы учащиеся уяснили главное. В дальнейшем же школьники неоднократно будут иметь возможность расширить свои представления о различных деталях и их соединениях.

Законы и теории изучаются школьниками по основам наук и занимают незначительное место в программах трудового обучения Поэтому на уроках труда учитель организует работу главным образом по повторению и применению известных учащимся законов и теорий. Лишь в редких случаях, например при изучении элементов машиноведения и электротехники в V - VIII классах или отдельных тем по электротехнике, радиоэлектронике и другим профилям углубленной трудовой подготовки в старших классах, учитель разъясняет новые для учащихся законы и теории.

В процессе трудового обучения школьники приобретают и некоторые методологические знания: на примерах изучения различных способов трудовой деятельности и ознакомления с методами той науки, на которой преимущественно базируется производство, определяющее профиль трудовой подготовки, ученики уясняют ряд общих методов познания, осуществления производственных процессов, трудовой деятельности людей.

Большое внимание в процессе трудового обучения уделяется формированию у учащихся оценочных знаний, которые позволяют выработать определенное отношение к изучаемой технике, технологии, трудовым процессам, к людям труда. Данный вид знаний имеет важное значение для органическою соединения процессов трудового обучения и воспитания.

Известно, что понятие "качество обучения" характеризуется с различных сторон - качество знаний, качество умении и навыков, качество воспитания в процессе обучения и др. Учитель труда должен постоянно задумываться над тем, как лучше применить в совокупности различные формы и методы, чтобы повысить качество трудового обучения и воспитания учащихся.

Как пример можно привести часть методики обучения технологии обработки металлов учащихся VI класса по теме "Взаимозаменяемость, стандартизация и технические измерения".

Одним из профессиональных качеств многих специалистов современного производства является умение оценить соответствие размеров изготовленного изделия требованиям чертежа. Подготавливая школьников к будущей самостоятельной жизни, необходимо отдавать себе отчет в том, что такие умения и навыки закладываются в фундамент общетехнических знаний специалиста любого профиля как обязательные. Одним из условий, без которых современная техника не смогла бы достичь высот качества, а современная технология не вышла бы на рубежи научно-технического прогресса, является стандартизация. Мы привыкли к выражению ''IBM-совместимые компьютеры", к тому, что немецкая лампочка сразу вворачивается в отечественный патрон, а батарейки, сделанные в Японии, отлично согласуются с российскими изделиями. Иначе и не мыслится. Однако это видимое согласие, привычное школьникам с детства, над которым они не задумываются ("Так и должно быть"), - на самом деле результат векового прогресса общетехнической дисциплины, изучаемой в вузах, техникумах и ПТУ под названием "Взаимозаменяемость, стандартизация и технические измерения". В школьной программе такой дисциплины не встретишь, а нужна она всем. Поэтому единственным "монополистом" по формированию знаний по допускам и техническим измерениям в школе является преподаватель технологии. Это накладывает на его деятельность особую ответственность. Следовательно, от знаний методики изложения основных положений этой непростой дисциплины, от личного проникновения учителя в приемы измерений и овладения измерителем, наконец, от умения согласовать допуски и техизмерения с работой над изготовлением конкретного изделия зависит успех (или неуспех) подготовки учащихся. Если быть предельно откровенными, не подготовленный в этом плане в школе человек сможет освоить эти знания, будучи взрослым. Казалось бы, упущения школы исправимы. Но это в масштабах страны оборачивается потерями от осознания людьми своего непрофессионализма, необходимости переучиваться, а как результат - упущениями в экономике.

Изучение вопросов стандартизации, допусков и технических измерений невозможно без общепринятых технических понятий и определений, которые в такой (ГОСТированной, специфической) форме для детей почти недоступны. Поэтому каждый, казалось бы, понятный профессионалу, момент формулировок надо объяснять. К сожалению, в методической литературе нет в полной мере достаточно разработанных рекомендаций, позволяющих реализовать деятельностно-параметрический принцип с использованием знаний по допускам и техническим измерениям. Покажем, как можно формировать представления у школьников, используя предлагаемые учебно-дидактические материалы.

На стенде из серии "Азбука измерений" дается упрощенная (по сравнению с ГОСТовской) формулировка понятия "номинальный размер", "Основной расчетный размер, от которого производят отсчет отклонений, называется номинальным размером". Перед классом ставят вопрос "Почему основной?". Ответ находится в основном для исполнителя документе-чертеже. Никто не вправе оспаривать качество детали, если все размеры соответствую! чертежным Исполнитель в этом случае всегда прав. Поэтому - "основной размер" Второй вопрос "Почему расчетный?". Здесь знаний учащихся младших классов может оказаться недостаточно, поэтому учитель объясняет на простом, понятном примере процесс получения конструкторскою размера "Предположим, мы хотели бы сделать тележку на двух колесах для перевозки картофеля. Конструкция очень проста - гладкий вал с двумя шейками на концах, чтобы установить подшипники, и с резьбой для крепления колес Ты, Петя (указывает на ученика небольшого роста), погрузил бы два мешка по 50 кг; но Вася (более высокий школьник) способен покатить и три. Кроме того, дорога с огорода неровная, вся в кочках, эту перегрузку тоже надо учесть. Ученые уже давно изучили прочность разных материалов, есть даже целая наука "Сопротивление материалов". Поэтому конструктор, знакомый с ней, делает такой расчет груз - 150 кг, коэффициент запаса прочности (учитываются перегрузки при движении) - 1,5, материал оси - сталь 45. Определяем диаметр шейки под подшипник. По расчетам получается 19,2 мм. Но все подшипники, которые выпускаются подшипниковыми заводами, стандартизированы, то есть их внутренние кольца определенных диаметров. Ближайшие по справочнику значения - диаметров - 18 и 20 мм. Ослаблять (уменьшая диаметр) нельзя, выбираем значение 20 мм. На чертеже появляется расчетный размер шейки под подшипник, который мы будем называть номинальным. Это слово для вас не новое вы, наверное, слышали выражение "денежная банкнота номиналом 5000 рублей". Представляется, что при таком подходе к объяснению, учитывающем возрастной фактор и уровень развития, можно сформировать осмысленное понимание общетехнического определения, термина. Покажем еще одно методическое решение вопросов формирования понятий по допускам на уроках технологии. Дело в том, что все приводимые в литературе (а они, соответственно, взяты из ГОСТа) формулировки сложны для восприятия детьми Цитирую "Допуск размера может быть определен через предельные отклонения, как алгебраическая разность между верхним и нижним отклонениями". На разработанных учебно-дидактических пособиях (стендах) даны две трактовки этого определения.