Смекни!
smekni.com

Использование обобщений при обучении математике в средней школе (стр. 2 из 4)

Математика владеет не только истиной, но и высшей красотой-красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства. (Б. Рассел)

Таким образом, в математике как ни в какой другой науке находит выражение важнейший критерий научной красоты - единство в многообразии. Математика раскрывает перед человеком красоту внутренних связей, существующих в природе, и указывает на внутреннее единство мира.

Язык математики - это особый язык науки. В отличии от естественного языка, который в основном классифицирует предметы и потому является языком качественным, язык математики прежде всего количественный. Количественный язык представляет собой дальнейшее развитие и уточнение обычного качественного языка.

Важнейшим преимуществом количественного языка математики является краткость и точность. В этом его огромное преимущество и в этом его красота, ибо именно в математическом языке претворяется один из основных признаков красоты в науке: сведение сложности к простоте.

Итак, математика - это не только самостоятельная наука о “математических структурах”, но и язык других наук, язык единый, универсальный, точный, простой и красивый. Хорошо сказал об этих качествах математики советский математик С.Л. Соболев: “Есть одна наука, без которой невозможна никакая другая. Это математика. Ее понятия, представления и символы служат языком, на котором говорят, пишут и думают другие науки. Она объясняет закономерности сложных явлений, сводя их к простым, элементарным явлениям природы. Она предсказывает и предвычисляет далеко вперед с огромной точностью ход вещей. ”

Что можно рассматривать на уроках математики, предвещающих красоту, стройность, закономерность? И как это связать с искусством и живописью?

Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство. (Г. Вейгель)

Т.О., симметрия воспринимается человеком как проявление закономерности, порядка, царящего в природе. Итак, целесообразность симметрических форм была осознана человечеством в доисторические времена, а в сознании древних греков симметрия стала олицетворением закономерности, целесообразности, а следовательно и красоты.

Пушкин А.С. рисует величавую Царевну - Лебедь со звездой во лбу (красота - симметрия) и окривевших злодеек ткачиху с поварихой (уродство - асимметрия).

Пропорция в искусстве определяет соотношение величин элементов художественного произведения. В эстетике пропорция, как и симметрия, является составным элементом категории меры и выражает закономерность структуры эстетического образа.

Возьмем простой пример: деление отрезка прямой. Если отрезок разделить пополам, зеркально - симметрично, то такое деление выглядит уравновешенным, мертвым. Если же точку деления взять слишком близко к одному из концов отрезка, то новая конфигурация будет чересчур неуравновешенной. Только некоторая “золотая середина”, которая не является геометрической серединой, обеспечивает желаемое единство симметрии и асимметрии.

Такое “радующее глаз” деление отрезка, по преданию, было известно еще Пифагору и называлось им “золотой пропорцией”. У древних египтян, “золотая пропорция" определяется как деление отрезка на две неравные части, при котором меньшая из них так относится к большей, как последняя ко всей длине отрезка. Художник и инженер Леонардо да Винчи называл ее “Sectio aurea" (золотое сечение), а математик и астроном Иоганн Кеплер, обнаруживший “золотую пропорцию" в ботанике, называл ее “Sectio divina” (божественное сечение).

“Золотое сечение" мы находим всюду: в изобразительном и прикладном искусстве, в архитектуре и музыке, в литературе, в предметах быта и машинах.

Каждому человеку нужно знать, какими были и как жили его давние и недавние предки, что довелось испытать и пережить народам нашей Родины на протяжении прошедших веков.

Что же это за наследие?

Это летописи, сказания, жития святых и праведников, песни и легенды. Это документы общественной жизни и становление российской государственности: законы, нравственные заповеди, указы и гражданские акты, договоры царей князей и других правителей.

Это творения художников, запечатлевших былые картины природы, панорамы городов, сцены быта, обряды и занятия наших пращуров.

Это сбереженные в музеях орудия труда, утварь, одежда, игрушки, разнообразные изделия искусных умельцев - мастеров.

Это памятники архитектуры - от церквей, монастырей и крепостей до мельниц, хозяйственных построек.

Погрузиться в прошлое, реально представить его картины и вместе с тем как бы стать участником былых событий нам поможет математика.

В развитии восприятия, внимания, памяти, произвольности мышления огромную лепту вносит оригами - искусство, близкое ребенку и доступное.

Не перечислить всех достоинств оригами в развитии ребенка. Доступность бумаги как материала, простота ее обработки привлекают учеников. Они овладевают различными приемами и способами действий с бумагой, такими, как сгибание, многократное складывание, надрезание, склеивание.

Оригами развивает у учащихся способность работать руками под контролем сознания, происходит развитие глазомера.

Оригами способствует концентрации внимания, так как заставляет сосредоточиться на процессе изготовления, чтобы получить желаемый результат.

Оригами имеет огромное значение в развитии конструктивного мышления детей, их творческого воображения, художественного вкуса, стимулирует развитие памяти, так как ребенок должен запомнить последовательность ее изготовления.

Оригами способствует четкому запоминанию таких геометрических понятий, как угол, сторона, квадрат, треугольник и т.д.

Оригами активизирует мыслительные процессы. В процессе конструирования у учащегося возникает необходимость соотнесения наглядных символов (показ приемов складывания) со словесными (объяснение приемов складывания) и перевод их значения в практическую деятельность (самостоятельное выполнение действий).

Оригами совершенствует трудовые умения учащегося, формирует культуру труда.

Этапы техники оригами.

1. Учитель объясняет приемы складывания и показывает на своем образце - учащиеся повторяют действия.

2. Учитель объясняет приемы складывания, опираясь на схемы, - учащиеся выполняют.

3. Учитель чертит схемы, не объясняя приемов складывания, - учащиеся выполняют.

4. Учитель предлагает нарисовать схемы складывания базовых форм.

5. Учитель называет базовые формы - учащиеся самостоятельно складывают.

6. Учащиеся самостоятельно объясняют схемы складывания.

7. Учащиеся самостоятельно объясняют и показывают приемы складывания.

Большую роль в эстетическом воспитании играет умение учеников чертить плоскостные фигуры, путем подбора выпуклых фигур комбинировать небольшие мозаичные фрагменты.

Представьте себе, что у вас имеется неограниченный запас одинаковых по форме деталей. Если ими можно покрыть всю плоскость без зазоров и наложений, то о таких фигурах говорят, что ими можно вымостить, или выложить, плоскость, а плоскость, выраженную фигурами, называют мозаикой. С древнейших времен такие мозаики использовались во всем мире для украшения полов, стен, в узорах для мебели, ковров, обоев, одежды и др. предметов.

Голландский художник М.К. Эшер с необычайной изобретательностью покрывал плоскость фигурами сложной конфигурации, напоминающими своими очертаниями птиц, рыб, животных и др. живых существ.

Наиболее ярким примером обладает анаморфное изображение фрагментов рисунка.

Этот термин происходит от греческих ana - снова и morphe - форма и означает реалистическое изображение, настолько сильно деформированное проективным преобразованием, что оно становится трудноузнаваемым. Если такую картинку рассматривать под некоторым углом к его плоскости, то появление неискаженного изображения столь неожиданно, что те, кто наблюдает подобный эффект впервые, как правило, вскрикивают от удивления.

Наиболее известным примером анаморфного изображения служит фрагмент картины Ханса Хольбейна “ Испанские послы" (1533г.).

Зажмурив один глаз и наклоняя страницу с репродукцией картины от себя так, чтобы левый нижний угол ее был направлен в открытый глаз и находился на расстоянии около 15 см, можно увидеть у ног послов череп.

Другой яркий пример анаморфного изображения можно наблюдать в загадочной картинке Сэма Ллойда.

В ней “запрятан" портрет Джорджа Вашингтона в зрелые годы. На этой же картинке изображена головоломка Сема Лойда: квадратный пирог Вашингтона требуется разрезать на 6 квадратных кусков не обязательно одинаковых размеров. “Косые изображения" такого рода иногда встречаются в детских книжках и рекламных объявлениях.

Этот метод анаморфного изображения иногда используется в дорожных знаках: слово “СТОП" располагается под таким углом, что его в нормальном ракурсе видит только водитель, приближающийся к перекрестку.

Геометрический метод построения косых изображений состоит в том, что сначала картину расчерчивают на квадратные клетки, затем матрицу растягивают, превращая ее в трапецию, после чего художник копирует картину, заполняя трапециевидные клетки и тщательно следя за возможно более точным соответствием содержимого каждой растянутой клетки содержимому квадратного оригинала.