Лекционное занятие:
Задачи в школьном курсе математики
Содержание
1. Роль задач в обучении математике
2. Основные этапы в решении задачи. Общие умения по решению задач
3. Классификация задач. Роль алгоритмов и эвристик в обучении решению задач
4. Организация обучения решению математических задач
5. Системы упражнений и требования к ним
1. Роль задач в обучении математике
В психологии, дидактике известны попытки дать определение задачи. Например, одно из них: «Задача – объект мыслительной деятельности, содержащий требование некоторого практического преобразования или ответа на теоретический вопрос посредством поиска условий, позволяющих раскрыть связи (отношения) между известными и неизвестными элементами» (Л.Л.Гурова. Психологический анализ задач. – Воронеж, 1976).
Задачи в обучении математике занимают важное место: это и цель, и средство обучения. Умение решать задачи – показатель обученности и развития учащихся.
При обучении математике задачи имеют образовательное, развивающее, воспитательное значение. Они развивают логическое и алгоритмическое мышление учащихся, вырабатывают практические навыки применения математики, формируют диалектико-материалистическое мировоззрение, являются основным средством развития пространственного воображения, а также эвристического и творческого начал.
При обучении теоретическим знаниям задачи способствуют мотивации введения понятий, выявлению их существенных свойств, усвоению математической символики и терминологии, раскрывают взаимосвязи одного понятия с другими.
В процессе изучения теоремы задачи выполняют следующие функции: способствуют мотивации ее введения; выявляют закономерности, отраженные в теореме; помогают усвоению содержания теоремы; обеспечивают восприятие идеи доказательства, раскрывают приемы доказательства; обучают применению теоремы; раскрывают взаимосвязи изучаемой теоремы с другими теоремами.
Воспитательное воздействие оказывает общий подход к решению задач: система задач, место, методы и формы ее решения, стиль общения учителя и учащихся, учащихся между собой при решении задач. Решение задач позволяет учащимся воспитывать в себе настойчивость, трудолюбие, активность, самостоятельность, формирует познавательный интерес, помогает вырабатывать и отстаивать свою точку зрения, воспитывать достоинство личности.
Развивающие функции задач заключаются в том, что в деятельности решения задач вырабатываются умения применять теоретические знания на практике, выделять общие способы решения, переносить их на новые задачи, развиваются логическое и творческое мышление, внимание, память, воображение.
С изменением роли и места задач в обучении обновляются и видоизменяются и сами задачи. Раньше они формулировались с помощью слов «найти», «построить», «вычислить», «доказать», в современной школе чаще используются слова «обосновать», «выбрать из различных способов решения наиболее рациональный», «исследовать», «спрогнозировать различные способы решения» и т д.
Решение задач является наиболее эффективной формой развития математической деятельности.
Процесс решения учебной задачи можно разделить на 4 основные этапы: осмысление условия задачи (анализ условия), поиск и составление плана решения, осуществление плана решения, изучение (исследование) найденного решения.
1). Умение анализировать требование задачи.
Под анализом требования задачи понимается выяснение возможных путей ответа на вопрос задачи. Одним из важнейших компонентов умения анализировать требование задачи является умение преобразовывать требование задачи в ему равносильное.
Например, докажем, что четырехугольник АВСD – квадрат, если докажем, что он поворотом на 90º отображается на себя.
Формирование этого умения связано с вооружением учащихся как можно большим числом признаков и свойств понятий;
2). Умение анализировать условие задачи.
Под анализом условия задачи можно понимать выявление такой информации, которая непосредственно не задана условием, но присуща ему.
Вся информация может быть разделена на три вида: а) информация, непосредственно заданная в условии; б) информация, полученная непосредственно из условия; в) информация, полученная уже из новой, т.е. выведенной ранее, информации.
Информация первого вида фиксируется чертежом и специальной записью под названием «дано».
Информация второго и третьего видов может быть получена следующими способами: а) получение следствий из непосредственно заданной информации; б) переосмысливания некоторых объектов (фигур, отношений между ними) в плане других понятий (например, АР – высота треугольника АВС. значит, АР ВС; задан правильный треугольник, значит, можно найти радиус вписанной и радиус описанной окружности и т.п.); в) замена термина его определением; г) перечисление характеристических свойств понятий; д) интерпретация символических записей; е) перевод содержания задачи на язык специальной теории и наоборот (например, векторной) .
Часто внимание учащихся на информации второго и третьего вида не обращается, поэтому дальше выполнения рисунка и записей «дано» и «требуется доказать» самостоятельное решение не двигается.
Нужно учить школьников получать информацию второго и третьего вида. Полезны упражнения вида: 1) в треугольнике АВС двух сумма углов 90º. Что вы скажете о треугольнике АВС?; 2) АВСD – трапеция. Назовите несколько свойств этой фигуры; 3) Можно ли прямоугольник определить следующим образом: прямоугольником называется параллелограмм, имеющий прямую, содержащую середины его противоположных сторон, своей осью симметрии?; 4)
. Какой факт выражает эта запись?Очень важно на уроках выполнять анализ условия задачи всем классом.
Для того чтобы научиться решать задачи, надо приобрести опыт их решения. Редкие ученики самостоятельно приобретают такой опыт. Долг учителя - помочь учащимся приобрести опыт решения задач, научить их решать задачи. Однако помощь учителя не должна быть чрезмерной. Если учитель много будет помогать ученику, на долю последнего ничего не останется или останется слишком мало работы по приобретению опыта решения задач. Так ученик не научится решать задачи. Если же помощь учителя будет мала, ученик также может не научиться решать задача. Учитель должен помогать ученику путем советов, как решать задачу, или вопросов, отвечая на которые ученик успешнее решит задачу. Иногда учитель разыгрывает решение задачи, сам задавая вопросы и сам же отвечая на них. Ученики подражают ему в этом, постепенно приучаясь решать задачи. Но такой вариант обучения требует большей затраты времени и не всегда приводит к хорошим результатам. Можно сказать, что механическое подражание не метод обучения решению задач. Нужны вопросы и советы учителя ученику, вызывающие развивающие мыслительную деятельность школьников, помогающие развивать творческий подход к решению задач.
Такие вопросы и советы должны обладать общностью для различных задач, иначе ученики не научатся решать многие задачи, а будут учиться решать каждую конкретную задачу в отдельности. В то же время вопросы и советы должны быть естественны и просты, должны иметь своим источником простой здравый смысл. Они должны оказывать ученику действенную, но не назойливую помощь. Но одних вопросов и советов учителя ученику недостаточно для обучения решению задач. Нельзя забывать, что "умение решать задачи есть искусство, приобретаемое практикой" .
Вопросы и советы ученику условно можно подразделить на четыре группы. Это подразделение вопросов, вообще говоря, не является категоричным. Может оказаться, что вопросы, рекомендуемые для первого этапа, окажут помощь и на втором этапе, а рекомендуемые для второго этапа - на третьем и т. п. Дело в том, что этапы решения задачи не могут быть строго изолированы один от другого, между ними существует определенная связь, в их единстве заключается процесс решения задачи.
Вопросы и советы для осмысления условия задачи (1-й этап).
Нельзя приступать к решению задачи, не уяснив четко, в чем заключается задание, т. е. не установив, каковы данные и искомые или посылки и заключения.
Первый совет учителя: не спешить начинать решать задачу. Этот совет не означает, что задачу надо решать как можно медленней. Он означает, что решению задачи должна предшествовать подготовка, заключающаяся в следующем: а) сначала следует ознакомиться с задачей, внимательно прочитав ее содержание. При этом схватывается общая ситуация, описанная в задаче; б) ознакомившись с задачей, необходимо вникнуть в ее содержание. При этом нужно следовать такому совету: выделить в задаче данные и искомые, а в задаче на доказательство -посылки и заключения; в) если задача геометрическая или связана с геометрическими фигурами, полезно сделать чертеж к задаче и обозначить на чертеже данные и искомые (это тоже совет, которому должен следовать ученик); г) в том случае, когда данные (или искомые) в задаче не обозначены, надо ввести подходящие обозначения. При решении текстовых задач алгебры и начал анализа вводят обозначения искомых или других переменных, принятых за искомые; д) уже на первой стадии решения задачи, стадии понимания задания, полезно попытаться ответить на вопрос: "Возможно ли удовлетворить условию?" Не всегда сразу удается ответить на этот вопрос, но иногда это можно сделать.