3. Найти все а, для которых уравнение (а-1)х2+(2а+3)х+2+а=0 имеет корни одного знака.
4. Найти все а, при которых неравенство
справедливо для всех неотрицательных х.5. Не решая уравнение определить знаки его корней: ах +2(а+1)х+2а=0;
Дополнительные задания:
6. При каких значениях р неравенство 5х -4(р+3)х+4<р справедливо для всех отрицательных х?
7. Определить знак корней уравнения:
а) 3ах +(4-6а)+3(а-1)=0; б) (а-3)х2-2(3а-4)х+7а-6=0.
8. Решить уравнение, используя теорему Виета: х2-(2а+1)х+а+а2=0.
5. Подведение итогов.
- Какова была тема занятия? Что нового узнали на занятии?
- Достигли ли цели, поставленной в начале занятия?
Учитель ставит баллы (от 1 до 8) ученикам, наиболее активно работавшим на занятии.
6. Постановка домашнего задания.
1. При каком значении параметра а оба корня уравнения
(а-2)х2-2ах+а+3=0 положительны?
2. Определить знак корней уравнения: (а-2)х2-2ах+2а-3=0.
3. Найти все а, при которых неравенство
справедливо для всех отрицательных х.4. Задания по теме следующего занятия «Соотношения на корни квадратного трехчлена»:
А) При каком значении параметра а уравнение х2+(а2+а-2)х+а=0 имеет корни, сумма которых равна 0?
Б) При каком значении параметра а один из корней уравнения
х2-(3а+2)х+а2=0 в девять раз больше другого?
Литература: [4], [8], [9], [13], [18], [27].
Занятие III. Соотношения на корни квадратного трехчлена
Цель: отработка навыка применения теоремы Виета при решении задач; формирование умения записывать на математическом языке условие задачи, умения анализировать, обобщать, находить рациональный способ решения задачи.
Ход занятия:
1. Организационный момент.
2. Разбор домашнего задания.
В №1-3 устно проверяется идея решения и называются ответы. Те, кто не справился с решением какой-то задачи, должны обратиться за помощью к тем, у кого решение выполнено верно, и исправить свои ошибки.
Учащимся предлагается показать найденное решение №4. Задача подробно разбирается, анализируется.
3. Решение задач.
3.1. При разборе №4 из домашнего задания делается вывод, как выполнять задания на соотношения между корнями квадратного уравнения, а именно: чтобы найти все значения параметра а, при которых корни уравнения Ax +Bх+C=0 удовлетворяют некоторому соотношению G( , ,a)=0 (соответственно, G( , ,a) 0 или G( , ,a) 0), достаточно найти все значения а, удовлетворяющие условиям:
(для G(
, ,a) 0 или G( , ,a) 0 получаем соответствующие неравенства вместо третьего уравнения системы).3.2. Совместное выполнение задания:
При каких значениях
сумма квадратов корней уравнения равна 4?При выполнении задания необходимо выразить через коэффициенты уравнения сумму квадратов корней уравнения; найти а; проверить существование корней, подставив полученные а в данное уравнение.
3.3. Выполнение заданий в парах.
Каждое предложенное задание сначала обсуждается в парах. Затем происходит всеобщее обсуждение решения. Найденное решение одним из учеников записывается на доске.
1. Найти все значения
, при которых корни уравнения удовлетворяют условию .2. При каких значениях
сумма квадратов корней уравнения является наименьшей? Чему равна эта сумма?В следующих задачах используется такое соотношение между корнями, которое непосредственно не выражается через коэффициенты. В этом случае составляем систему, где два уравнения — формулы Виета, а третье — заданное соотношение. При решении такой системы корни уравнения обычно находятся, поэтому специально проверять их существование не надо.
3. При каких а разность корней уравнения
равна 14?4. При каких значениях параметра k произведение корней уравнения х2+3х+(k2-7k+12)=0 равно 0?
5. При каких а разность корней уравнения 2х2 - (а + 1)х + (а - 1) =0 равна их произведению?
Дополнительные задания:
6. В уравнении х2-2х+а=0 квадрат разности корней равен 16. Найти а.
7. Известно, что корни уравнения х2-5х+4=0 на 1 меньше корней уравнения х2-7х+3а-6=0. Найти а и корни каждого из уравнений.
8. Пусть х1 и х2 – корни уравнения 2х2-7х-3=0. Составить квадратное уравнение, корнями которого являются числа х1-2 и х2-2.
4. Подведение итогов занятия.
- Что нужно сделать, чтобы решить задачу на соотношение на корни квадратного уравнения?
Учащиеся в паре оценивают работу друг друга по пятибалльной шкале. Также учитель ставит по одному баллу наиболее активным учащимся.
5. Постановка домашнего задания
Задания, обязательные для выполнения:
1. В уравнении х2-4х+а=0 сумма квадратов корней равна 16. Найти а.
2. При каком значении а сумма квадратов корней уравнения х2+(2-р)х-р-3=0 равна квадрату разности корней этого уравнения?
3. Определить а таким образом, чтобы корни уравнения 2х2+(2а-1)х+а-1=0 удовлетворяли соотношению 3х -4х =11.
Дополнительные задания:
4. Пусть х1 и х2 – корни уравнения 2х2-7х-3=0. Составить квадратное уравнение, корнями которого являются числа 2х1+3 и 2х2+3.
5. Не вычисляя корней уравнения 3х2+8х-1=0 найти х1х23+х2х13.
6. При каких значениях р и q корни уравнения х2+рх+q=0 равны 2р и
?Литература: [5], [16], [25], [29], [33].
Занятие IV. Квадратный трехчлен: теорема Виета; знаки корней квадратного трехчлена; соотношения на корни квадратного уравнения
Цель: закрепление умения использовать теорему Виета для определения знаков корней квадратного трехчлена и решения задач на соотношения между корнями квадратного уравнения; применение имеющихся знаний при решении задач; формирование умения работать в группе.
Ход занятия:
1. Организационный момент.
2. Проверка домашнего задания: 3 ученика до начала занятия записывают решение задач №1-3 на доске. На занятии учащиеся проверяют решение, исправляют ошибки. Задачи №4-6 учитель проверяет индивидуально у каждого учащегося.
3. Решение задач. Класс делится на группы по 4-5 человек. Каждая группа получает по 2 блока заданий (у всех задания одинаковые), которые необходимо решить за определенное время (20 мин).
За каждое верно решенное задание первого блока будет ставиться 2 балла, второго блока – 3 балла.
За 17 минут до окончания занятия группы прекращают свою работу, начинается проверка и обсуждение решений, найденных группами. По результатам проверки подводятся итоги, и выявляется группа-победитель.
Задания:
Блок 1.
1. При каких значениях параметра а уравнение (а-2)х +(4-2а)х+3=0 имеет единственное решение?
2. При каких значениях а уравнение
(а -6а+8)+ (а -4)х+(10-3а- а )=0 имеет более 2-х корней?