В методологии УДЕ делается акцент на симультанное мышление детей, на когнитивные процессы (на стратегию понимания), а не на частные упражнения, рассчитанные поэтапно в одном случае на “развитие памяти”, в другом - на “развитие мышления” и т. п.
Учебное пособие, организованное по технологии УДЕ, приносит ученику радость и удовлетворение, выражаемое обычно мимикой или возгласом каждый раз, когда решающий убеждается, что достиг цели, получил ожидаемое число или выражение. В основу УДЕ положен принцип: чтобы обучить при высоком уровне знании, необходимо рассмотреть целостные группы взаимосвязанных понятий.
Принцип УДЕ в обучении математике реализуется следующим образом:
1) совместное и одновременное изучение взаимосвязанных понятий и операций;
2) широкое использование обратной задачи;
3) применение деформированных упражнений;
4) укрупнение исходного упражнения посредством самостоятельного составления учеником новых заданий;
5) одновременная подача одной и той же математической информации на нескольких кодах.
В системе УДЕ основным блоком знаний, усваиваемых “одно через другое” становится триада задач.
Методическая система УДЕ в литературе последнего времени характеризуется как одна из составных частей “педагогики сотрудничества”.
В самом деле, обнаружена высокая эффективность обучения на основе крупных блоков знаний и на основе опережения действующих программ.
Важно здесь понять и то обстоятельство, что при использовании учителем системой УДЕ раскрываются дополнительные возможности так называемых подсознательных механизмов мышления, опережающих ход логического рассуждения.
Главную технологическую новизну УДЕ учителю надо видеть в наличие знаний, по которым школьник упражняется в самостоятельном составлении обратной задачи и последующем решении составленной им задачи.
Главное условие овладения учителем методической системой УДЕ заключается в личной инициативе учителя, в его решимости испытать на своих уроках идею крупноблочного построения программного материала, а не ограничиваться пассивным выжиданием.
Рассуждая в категориях когнитивной психологии, можно утверждать, что при обучении по УДЕ “посредством сочинения обратной задачи” каждое число, понятие, суждение дольше сохраняется в кратковременной памяти. А последнее немаловажно: “Чем больше сохранятся некоторый материал в кратковременной памяти, тем более прочным оказывается долговременный след”.
2.1.4 Технология обучения С. Н. Лысенковой
Технология развивающего обучения С. Н. Лысенковой способствует повышению активности учащихся на уроке. Работая по своему методу “перспективно - опережающего обучения”, Софья Николаевна добивается желаемых результатов в деле обучения, воспитания и развития учеников. По её технологии ученики избавлены от механического зазубривания правил и формулировок. Они усваивают осмысленно: составляют правило по данной им схеме - опоре, выполняя практическое задание - решение задачи, примера, уравнения.
Схемы - опоры - это, оформленные в виде таблиц, карточек, наборного полотна, чертежа, рисунка, выводы, которые рождаются в момент объяснения.
От традиционной наглядности они отличаются тем, что являются опорами мысли, опорами действия. Школьники строят свой ответ, пользуясь схемой, читают её, работают с ней. Опорные карточки по разным темам программы помогают в одном случае своевременно предупредить ошибку, в другом - проработать допущенную тут же на уроке, в третьем - провести профилактическое обобщённое повторение во фронтальных и индивидуальных заданиях.
Работа с опорами требует наличия их в комплекте у каждого учителя. Хранить их надо в кабинете в порядке, все пронумеровать, составить каталог. Схем - опор не так уж много. Всё хорошо в меру!
Схемы - опоры на уроках стали постоянными помощниками учеников, условием бесконфликтного, делового, дружеского общения, основой уверенности детей в своих способностях преодолеть трудности, импульсом к активному, заинтересованному труду. Схемы - опоры обеспечивают и более высокую работоспособность, а также энергичный темп урока.
Использование опорных схем позволяет детям не учить дома правила, формулировки - всё усваивается на уроке. А висят они в классе столько, сколько нужно до полного усвоения материала, после чего необходимость в них отпадает.
В результате такой организации учебного процесса в классе создаётся чёткий, единый, общий темп работы, заданный самими учениками.
Высокая организация каждого этапа урока, дружная работа класса создают резерв времени, а значит, возможность выполнять больший объём упражнений. Вот из чего складываются первые шаги опережения: объединение близкого и однородного материала учебника, попутное прохождение трудных тем программы путём приближения их к изучаемому в данный момент.
Учитель перестаёт испытывать недостаток времени, а в некоторых случаях получает даже избыток. Изучение трудных тем рассредотачивается и ведётся на трёх этапах последовательно, от простого к сложному.
На первом этапе происходит знакомство с новыми понятиями. Раскрытие темы. Идёт активное развитие доказательной речи с использованием опор.
Второй этап включает уточнение понятий и обобщение материала по теме. Дети уже сознательно ориентируются в схеме - обобщении, овладевают доказательствами, справляются с заданиями в школе и дома, которые впервые в это время прелагаются в качестве самостоятельных. Именно на этом этапе происходит опережение.
На третьем этапе используется сэкономленное время. Схемы в этот период убираются, формируется беглый навык практического действия и появляется возможность для новой перспективы.
Тема “Нумерация многозначных чисел” заканчивает учебный год третьего класса. Для более лёгкого усвоения данной темы работу можно провести следующим образом: учитель пишет на доске числа (рис.), дети читают их.
4
4 4
4 4 4
4 4 4 4
4 4 4 4 4
4 4 4 4 4 4
В классе обязательно находятся ученики, которые могут правильно прочитать многозначное число. Далее учитель объясняет: число, стоящее на первом месте справа, - это единицы, на втором месте - десятки, на третьем - сотни, на четвёртом - единицы тысяч, на пятом - десятки тысяч, на шестом - сотни тысяч. Единицы, десятки, сотни образуют первый класс - класс единиц; единицы тысяч, десятки тысяч, сотни тысяч - образуют второй класс - класс тысяч. Вырисовывается начало будущей схемы.
На дальнейших уроках дети читают числа, вписанные учителем в схему, или сами записывают их в тетради (тоже в схеме), при этом называют отсутствующий разряд. В процессе работ следует задавать уточняющие вопросы: Сколько чисел написано? А сколько цифр в числе 705419? Как называется это число по количеству знаков? А какое число надо считать семизначным? В скольких классах оно записано? Какой разряд отсутствует?”
Тема раскрывается последовательно на 12 уроках. Далее следует работа по обобщению изученного материала.
1. Прочитать схему.
2. Прочитать числа, записанные на доске в схеме: 534817, 504300, 92470.
Какие разряды отсутствуют?
3. Записать числа под диктовку в схеме тетради.
Проверка чтением.
4. Записать на доске и в тетрадях: 7 ед. II класса; 501 ед. II класса; 34 ед. I
класса.
5. Написать соседей числа 100 000.
6. Определить, сколько всего десятков, сотен, тысяч в числе 8457.
7. Определить разрядные единицы числа 40903.
8. Число 41 увеличить в 1000 раз. Число 9200 уменьшить в 100 раз.
9. Назвать наибольшее шестизначное число, наименьшее шестизначное
число.
Так идёт подготовка к проверочной работе.
2.2. Технология интенсификации обучения на основе схемных и знаковых моделей учебного материала В. Ф. Шаталова
Методическая система педагога В. Ф. Шаталова позволяет успешно решить одну из труднейших педагогических задач - приобщить каждого школьника к ежедневному напряжённому умственному труду, воспитать познавательную самостоятельность как качество личности, укрепить в каждом ученике чувство собственного достоинства, уверенности в своих силах и способностях.
В нынешних школьных программах за короткими теоретическими положениями сразу следует практический этап: решение задач, выражений. Принцип ведущей роли теоретических знаний, выдвинутый Л. В. Занковым и В. В. Давыдовым, стал фундаментом, на котором базируется быстрое продвижение вперёд всех учеников. Упор на практику делается позже, после изучения теоретического раздела. При такой постановке обучения у ребят практически не бывает пробелов в знаниях.
Изложение материала большими блоками (тема, раздел) позволяет лучше его осмыслить, осознать логические взаимосвязи там, где раньше были лишь отдельные теоремы, правила, параграфы. Ученику предоставляется возможность увидеть всю дорогу, а не часть её, узнать, что ждёт впереди.
Вот как идёт работа над новым материалом по методике В. Ф. Шаталова. Первый этап - развёрнутое, образно - эмоциональное объяснение учителем отобранных для урока параграфов. Второй этап - сжатое изложение учебного материала по опорному плакату, озвучивание, расшифровка закодированного с помощью разнообразных символов основных понятий и логических взаимосвязей между ними. Третий этап - изучение опорных сигналов, которые получает каждый ученик и вклеивает их в свой альбом. Четвёртый - работа с учебником и листом опорных сигналов в домашних условиях. Пятый - письменное воспроизведение опорных сигналов на следующем уроке. Шестой - ответы по опорным сигналам (письменные и устные: тихие, магнитофонные по листам взаимоконтроля и т. д.). Седьмой - постоянное повторение и углубление ранее изученного материала. Таким образом, семь этапов работы над теоретическим материалом.