Смекни!
smekni.com

Методика роботи над простими задачами, що розкривають конкретний зміст арифметичних дій (стр. 10 из 12)

Діаграма

Загальний рівень сформованості умінь розв’язування простих задач, що розкривають конкретний зміст арифметичних дій, в експериментальному і контрольному класах на початку і в кінці експерименту


Проведення експериментального дослідження дало змогу виявити і оцінити ефективність використання пропонованої системи простих задач, що розкривають конкретний зміст арифметичних дій, і простежити процес розвитку умінь розв’язувати дані задачі порівняно з навчанням дітей в контрольному класі. У процесі використання розробленої системи простих задач, що розкривають конкретний зміст арифметичних дій, в учнів експериментального класу порівняно з контрольним значно підвищився рівень сформованості відповідних умінь, що свідчить про ефективність застосовуваного напрямку роботи.

Висновки

На сучасному етапі розбудови початкової освіти розв’язування простих текстових задач у навчанні математики переслідує такі цілі: формування в учнів загального підходу, загальних умінь і здібностей розв’язання будь-яких задач; пізнання і більш глибоке оволодіння математичними поняттями, що вивчаються, і деякими загальнонауковими й загальножиттєвими поняттями; оволодіння поняттями моделі й моделювання і власне математичним моделюванням; розвиток мислення, кмітливості учнів, творчого потенціалу.

Через розв'язування задач діти ознайомлюються з важливими фактами, які мають пізнавальне і виховне значення. Текстові задачі допомагають розкрити опосередковані зв’язки математики з навколишнім середовищем і практичною діяльністю людей, реалізувати пізнавальні, розвивальні і виховні функції навчання. Проте ряд аспектів формування вмінь розв’язувати прості задачі, що розкривають конкретний зміст арифметичних дій, залишилися нерозкриті, зокрема обсяг теоретичних знань про прості задачі, що розкривають конкретний зміст арифметичних дій, і процес її розв’язування у початкових класах; добір різнорівневих завдань, спрямованих на формування вмінь розв’язувати ці задачі; способи раціонального поєднання фронтальної, групової та індивідуальної форм роботи на уроках математики при розв’язуванні простих задач в умовах диференційованого навчання у початковій ланці школи.

Прості задачі в системі навчання математики відіграють дуже важливу роль. За допомогою розв'язування простих задач формують одне з центральних понять початкового курсу математики — поняття про арифметичні дії і ряд інших понять. Уміння розв'язувати прості задачі є підготовчим ступенем опанування учнями умінь розв'язувати складені задачі, бо розв'язування складеної задачі зводиться до розв'язування ряду простих задач. Розв'язуючи прості задачі, діти вперше ознайомлюються з задачею і її складовими частинами. У зв'язку з розв'язуванням простих задач діти опановують основні прийоми роботи над задачею. Тому вчитель повинен знати, як організувати роботу над простими задачами кожного виду.

Щоб розв'язати просту задачу, учень повинен виділити в ній відоме й невідоме, а потім вибрати арифметичну дію чи скласти рівняння, за допомогою яких знайти невідоме. Для цього треба перевести на математичну мову відношення між даними і шуканими величинами, про які йдеться в задачі. Наше дослідження присвячене роботі над задачами першої групи – це задачі на знаходження суми, остачі, добутку, на ділення.

Інтенсивність розвитку вмінь молодших школярів у розв'язуванні простих задач, що розкривають конкретний зміст арифметичних дій, визначається, передусім, змістом задач і методами керування цим процесом. Формування навичок розв'язування простих арифметичних задач і розвиток умінь розв'язувати складені задачі на початковому етапі відбувається за допомогою наслідування зразків і постійної практики. Проте кожна задача, розв'язана з певною часткою власних зусиль, стає зразком для розв'язання інших задач. Тому методи навчання математики і вироблення умінь в учнів повинні бути спрямовані на перенесення здобутих результатів на нові об'єкти, нові задачі, в нові умови, на порівняння схожих чи взаємопов'язаних між собою задач.

Важливе значення для розв'язування простих задач, що розкривають конкретний зміст арифметичних дій, має ретельний добір навчальних завдань, які мають відповідати певним загально-методичним вимогам: забезпечувати засвоєння учнями програмового матеріалу з математики і, зокрема, формувати в них знання про задачу, її склад і процес розв'язування, вчити використовувати набуті знання в різних ситуаціях; зміст завдань має відповідати темі уроку і меті вивчення матеріалу, а числові дані — програмовим вимогам; послідовність застосування вправ має сприяти свідомому засвоєнню теоретичних знань і вмінню розв'язувати задачі, розвитку прийомів розумової і творчої діяльності школярів; створювати умови для узагальнення способів діяльності; відповідати логіці й структурі процесу формування вмінь; кількість вправ повинна відповідати індивідуально-психологічним особливостям школярів і бути достатньою для формування певного вміння або навички.

Дипломне дослідження мало теоретико-експериментальний характер і проводилося у два етапи. На експериментальному етапі на основі напрацьованої теоретичної інформації здійснювався формуючий експеримент, пов’язаний із формуванням у молодших школярів умінь і навичок розв’язування простих задач, що розкривають конкретний зміст арифметичних дій, з використанням диференційованого підходу, вивчалася його ефективність та практична значущість. Залучаючи здібних учнів до розв'язування простих задач, що розкривають конкретний зміст арифметичних дій, ми тим самим інтенсифікували процес навчання, розвивали творче мислення школярів, формували стійкий інтерес до предмета.

Робота, яка проводилася нами в експериментальному класі, позитивно вплинула на підвищення якості знань і вмінь молодших школярів. У процесі використання розробленої системи простих задач, що розкривають конкретний зміст арифметичних дій, в учнів експериментального класу порівняно з контрольним значно підвищився рівень сформованості відповідних умінь, що свідчить про ефективність добірки простих задач, що розкривають конкретний зміст арифметичних дій, у формуванні математичних уявлень і понять у молодших школярів.

Список використаної літератури

1. Анкудинова Т.Г. Работа над текстовой задачей // Начальная школа, 1997, № 7.-с. 42-43.

2. Бантова М.О. Методика викладання математики в початкових класах. – К.: Вища школа, 1982. – 288 с.

3. Басангова Р.Е. Стимулювання пізнавальної діяльності учнів в ході розв’язування задач // Поч. школа. – 1989. – №1. – С. 40-44.

4. Белова Е.С. Развитие диалога в процессе решения школьниками мыслительных задач // Вопр. психологии. – 1991. – №2. – С. 148-153.

5. Богданович М.Б. Методика розв’язування задач у початковій школі. – К.: Вища школа, 1990. – 234 с.

6. Богданович М.Б., Козак М.В., Король Я.А. Методика викладання математики в поч. кл. – Тернопіль: Навч. книга – Богдан, 2001. – 368 с.

7. Богданович М.В. Урок математики в початковій школі: Пос. для вчителя. – К.: Рад. школа, 1990. – 192 с.

8. Богоявленский Д.Н., Менчинская Н.А. Психология усвоения знаний в школе. – М.: Просвещение, 1959. – 242 с.

9. Бородулько М.А., Стойлова Л.П. Обучение решению задач и моделирование // Начальная школа, 1996, № 8. - с. 26-31.

10. Братанки О. Реалізація диференційованого навчання в умовах комбінованого уроку // Рідна школа. – 2000. – №11. – С. 49–52.

11. Василенко І.З. Методика викладання математики в початкових класах. – К.: Просвіта, 1971. – 376 с.

12. Вікова та педагогічна психологія (О.В.Скрипченко, Л.В.Долинська, З.В.Огороднійчук та ін.-К.: Просвіта, 2001.-416с.

13. Володько В.М. Індивідуалізація і диференціація навчання; понятійно-категоріальний аналіз // Пед. і психол. – 1997. – №4. – С. 9–17.

14. Волокитина М.Н. Очерки психологии школьников первого класса /Под ред. М.Смирнова. – М.: Учпедгиз, 1951. – 102с.

15. Газдун М.І. Як учити молодших школярів розв’язувати задачі // Поч. школа. – 1988. – №11. – С. 70-72.

16. Галузинский В.М. Индивидуальный подход в воспитании учащегося. – К.: Высшая школа, 1982. – 240 с.

17. Гільбух Ю.З. Діагностика мислительних здібностей // Рад. школа. – 1990. – №12. – С. 19-26.

18. Глушков И.К. Дифференцированная работа над задачами // Нач. школа. – 1985. – №2. – С. 34-35.

19. Глушков И.К. Составление задач по выражению // Начальная школа, 1995, №12.-с.50-55.

20. Гора Т., Логачевська С. Диференційований підхід до розв'язування текстових задач // Поч. школа. – 2002. - №1. – С. 17-22.

21. Гословська І.Г., Скворцова С.О. Формування позитивної мотивації навчання в молодших школярів на уроках математики //Наука і освіта, - 2000. - №6. – с.18-24.

22. Давыдов В.В. Проблемы развивающего обучения. – М.: Просвещение, 1986. – 220 с.

23. Друзь Б.Г. Виховання пізнавальних інтересів молодших школярів у процесі навчання. – К.: Рад. школа, 1978. – 126 с.

24. Друзь Б.Г. Творчі вправи з математики для початкових класів. – К.: Рад. школа, 1988. – 144 с.

25. Завізєна Н. Тлумачення індивідуалізованого навчання у психолого-педагогічній літературі // Рідна школа. – 1999. – №9. – С. 55–57.

26. Заїка А., Богданович М. Учням про задачу і процес її розв’язування // Початкова школа. – 2000. – № 11. – С. 28-29.

27. Захарова А.М. Розвивальне навчання математики в початковій школі // Психол. і педагогіка. – 2000. – №1. – С. 21-27.

28. Истомина Н.Б., Шикова В.Н. Формирование умений решать задачи различными способами // Нач. школа. – 1985. – №9. – С. 50-54.

29. Калмыкова З.И. Пути развития продуктивного мышления школьников // Вопр. психологии. – 1978. – №3. – С. 143-148.

30. Король Я.А. Математика в початкових класах: Культура усного і писемного мовлення. – Тернопіль: Навч. книга – Богдан, 2000. – 160 с.

31. Король Я.А. Розв’язування текстових задач різними способами // Актуальні проблеми розбудови національної освіти. Ч. ІІІ. – К.-Херсон, 1997. – С. 76-78.