Число a называется корнем (или решением) уравнения (1), если обе части уравнения (1) определены при
Решить уравнение – значит найти все его корни или доказать, что корней нет.
Если в условиях задачи не указано, на каком множестве нужно решить уравнение, то решение следует искать в ОДЗ этого уравнения.
В процессе решения часто приходится преобразовывать уравнение, заменяя его более простым (с точки зрения нахождения корней). Есть одно правило, которое не следует забывать при преобразовании уравнений: нельзя выполнять преобразования, которые могут привести к потере корней.
Назовем преобразование уравнения (1) допустимым, если при этом преобразовании не происходит потери корней, то есть получается уравнение
которое либо имеет те же корни, что и уравнение (1), либо, кроме всех корней уравнения (1), имеет хотя бы один корень, не являющийся корнем уравнения (1), посторонний для уравнения (1) корень. В связи с этим используют следующие понятия.
Уравнение (2) называется следствием уравнения (1), если каждый корень уравнения (1) является корнем уравнения (2).
Уравнения (1) и (2) называются равносильными (эквивалентными), если каждое из этих уравнений является следствием другого. Иными словами, уравнения (1) и (2) равносильны, если каждый корень уравнения (1) является корнем уравнения (2) и наоборот, каждый корень уравнения (2) является корнем уравнения (1). Уравнения, не имеющие корней, считаются равносильными.
Если уравнения (1) и (2) равносильны, то пишут
а если уравнение (2) является следствием уравнения (1), то пишут
Отметим, что если исходное уравнение с помощью допустимых преобразований заменено другим, причем в процессе преобразования хотя бы один раз уравнение заменялось неравносильным ему следствием, то проверка найденных корней путем подстановки в исходное уравнение является обязательной.
Если же при каждом преобразовании уравнение заменялось равносильным, то проверка не нужна (не следует путать проверку с контролем вычислений).
Рассмотрим еще одно понятие, связанное с решением уравнений. Будем говорить, что уравнение (1) равносильно совокупности уравнений
если выполнены следующие условия:
1) каждый корень уравнения (1) является корнем, по крайней мере, одного из уравнений (3);
2) любой корень каждого из уравнений (3) является корнем уравнения (1).
Если указанные условия выполнены, то множество корней уравнения (1) является объединением множеств корней уравнений (3).
Если уравнение записано в виде
то каждое решение этого уравнения является решением, по крайней мере, одного из уравнений
Однако нельзя утверждать, что любой корень каждого из уравнений (5) есть корень уравнения (4).
Например, если
Таким образом, в общем случае нельзя утверждать, что уравнение (4) равносильно совокупности уравнений (5). Чтобы решить уравнение (4), достаточно найти корни уравнений
2.1.2. Наиболее важные приемы преобразования уравнений
Все преобразования уравнений можно разделить на два типа: [15]
1) Равносильные, то есть преобразования, после применения любых из которых получится уравнение, равносильное исходному.
2) Неравносильные, то есть преобразования, после применения которых может произойти потеря или приобретение посторонних корней.
Рассмотрим некоторые виды преобразований уравнений и проанализируем, к каким типам они относятся.
1. Перенос членов уравнения из одной части в другую, то есть переход от уравнения
к уравнению
Указанное преобразование приводит к равносильному уравнению, то есть (1)
В частности,
2. Приведение подобных членов, то есть переход от уравнения
к уравнению
Справедливо следующее утверждение: для любых функций
Переход от уравнения (3) к уравнению (4) является допустимым преобразованием, при котором потеря корней невозможна, но могут появиться посторонние корни.
Таким образом, при приведении подобных членов, а также при отбрасывании одинаковых слагаемых в левой и правой частях уравнения получается уравнение, являющееся следствием исходного уравнения. [18]
Например, если в уравнении
вычеркнуть в левой и правой его частях слагаемое
являющееся следствием исходного: второе уравнение имеет корни
Отметим еще, что если ОДЗ уравнения (4) содержится в области определения функции
3. Умножение обеих частей уравнения на одну и ту же функцию, то есть переход от уравнения (4) к уравнению
Справедливы следующие утверждения:
1) если ОДЗ уравнения (4), то есть пересечение областей определения функций