Решение исходного неравенства является общей частью решений всех неравенств системы, то есть имеет вид
Ответ.
Теперь перейдем к решению более сложных задач, стараясь свести их решение к стандартным ситуациям – к простейшим неравенствам, рассмотренным выше. Приемы сведения во многом аналогичны приемам, применяемым при решении иррациональных уравнений.
Если в неравенстве встречаются два квадратных радикала, обычно приходится неравенство возводить в квадрат дважды, обеспечивая при этом необходимые для этой операции условия.
Пример 9. Решить неравенство
Решение. Перенесем второй радикал в правую часть, чтобы обе части неравенства стали неотрицательными, и его можно было возвести в квадрат:
Мы пришли к простейшему стандартному неравенству, которое согласно схеме (1) равносильно системе:
Ответ.
Замечание. При получении неравенства
Пример 10. Решить неравенство
Решение. Начнем с отыскания допустимых значений неизвестного:
Заметим, что для избавления от радикала достаточно возвести данное неравенство в квадрат. Но для этого необходимо, чтобы обе части его были неотрицательны, что выполняется лишь при выполнении условия
Итак, если
Ответ:
Замечание. При решении последней задачи мы фактически получили такие новые схемы, легко выводимые из схем (1) и (2):
Если в правой части подобного неравенства стоит не единица, а любое другое число кроме нуля, можно естественно, поделить на него обе части неравенства и, в зависимости от знака этого числа, перейти к неравенствам из схем (4) или (5).
3.2.2. Умножение обеих частей неравенства на функцию
Выражения
Пример 11. Решить неравенство
Решение. Найдем ОДЗ:
Умножим обе части данного неравенства на выражение, сопряженное его левой части и, очевидно, положительное в ОДЗ:
из которого находим прямым возведением в квадрат (ведь обе части этого неравенства положительны)
Во втором случае, если общий множитель положителен (то есть при
из которого прямым возведением в квадрат (ведь обе части этого неравенства положительны) получаем, что оно справедливо при
Осталось указать, что в третьем возможном случае – если общий множитель равен нулю, – неравенство не выполняется: мы получаем тогда
Ответ:
3.2.3. Метод введения новой переменной
Для решения иррациональных неравенств, так же как и для решения иррациональных уравнений, с успехом может применяться метод введения новой переменной.
Иногда удается иррациональную функцию, входящую в неравенство, заменить новой переменной таким образом, что относительно этой переменной неравенство становится рациональным. [24]
Пример 12. Решить неравенство
Решение. Перепишем исходное уравнение
Сделаем замену
Таким образом, для определения
Ответ.
Пример 13. Решить неравенство
Решение. Введем новую переменную
Тогда
Осталось сделать обратную замену и найти
Ответ.
3.2.4. Решение иррациональных неравенств с использованием свойств входящих в них функций
1. Использование монотонности функции