Смекни!
smekni.com

Зачетная система при обучении математике (стр. 3 из 7)

Бывают случаи, когда в одном варианте трудно представить все основные группы задач. Такая ситуация часто складывается, например, в геометрии. Так, тема «Сумма углов треугольника» включает в себя три фрагмента: «Параллельность прямых», «Сумма углов треугольника», «Прямоугольный треугольник». В последний входят и признаки равенства прямоугольных треугольников. Поэтому, чтобы охватить весь объем содержания, нужны, по крайней мере, три задачи. Но задачи по геометрии (даже несложные), как правило, более трудоемки, чем по алгебре. В связи с этим можно или увеличить время, отводимое на соответствующий тематический зачет (например, взять два урока), или же пойти по пути составления разных вариантов. В последнем случае в каждый вариант можно включить две задачи, относящиеся к каким-либо двум из указанных трех фрагментов. Например, в одном из них – задачи на признаки параллельности прямых и сумму углов треугольника, в другом – на свойства углов при параллельных прямых и секущей и признаки равенства прямоугольных треугольников. Важно, чтобы были охвачены все группы задач.

Для такого подхода к составлению вариантов особенно благоприятны условия открытого зачета. Готовясь к зачету, ученик знает, что все виды задач войдут в проверку, будут включены в какой-нибудь из вариантов. Какой именно вариант ему достанется, ученик не знает, но ему известно, что, не решив хотя бы одну задачу, он не сдаст зачет. Поэтому учащийся вынужден готовиться по всем обязательным задачам. В случае сомнений по поводу знаний ученика учитель всегда может на зачете предложить ему еще задачу.

Основное назначение дополнительной части – дать учителю возможность дифференцировать учащихся по уровню их подготовки, а также стимулировать школьников, которым хорошо дается математика, к совершенствованию своей подготовки, развитию формируемых умений. Для этой цели нет необходимости обеспечивать полноту охвата материала темы на более высоком уровне. Для выставления ученику повышенной оценки достаточно убедиться в том, что он проявляет полное владение обязательными результатами обучения, то есть имеет хорошую опорную подготовку, и при этом справляется с решением более сложных задач.

Понятно, что при таком подходе необязательно предлагать всем учащимся аналогичные задачи. Поэтому в разные варианты можно включать разные по содержанию задания, важно лишь проследить, чтобы они были примерно одинаковы по уровню сложности. Так, например, в приведенном зачете по теме «Неравенства» дополнительная часть содержит два задания. Одно из них требует более развитой по сравнению с обязательным уровнем техники решения неравенств. Другое с технической стороны несложно. Но здесь ученику придется найти способ решения задачи, применить знания из предыдущей темы, иными словами, проявить определенную умственную инициативу и самостоятельность. Таким образом, некоторые ученики могут выполнять оба задания, продемонстрировав широту своей подготовки; другие имеют возможность, выбрав задание, проявить себя в том, в чем они сильнее.

Объем зачета, его обязательной части, а также дополнительных заданий планируется таким образом, чтобы их выполнение было посильно успевающему ученику в отведенное для зачета время.

Можно увеличить число дополнительных заданий, включив резервные и предоставив учащимся возможность выбора.

Необходимо иметь в виду, что к содержанию и уровню сложности дополнительных заданий рекомендуется относиться критически и при необходимости или желании учителя пересматривать их, учитывая особенности класса [3].

3.2 Текущий зачет

Текущие зачеты проводятся несколько раз в ходе изучения темы. От тематических они отличаются тем, что охватывают меньший по объему материал; поэтому, как правило, на их проведение не требуется отводить целый урок. Это могут быть небольшие работы, рассчитанные на 10-20 мин и направленные на проверку одного – двух умений, формируемых в течение нескольких уроков.

Задания для текущих зачетов отбираются таким же образом, как и для тематических. При этом требуется только разбить тему на смысловые фрагменты, по которым и организовать проведение зачетов. Например, тема «Квадратный трехчлен» при обучении по учебнику «Алгебра – 8 (С. А. Теляковского) естественно делится на такие разделы: «Разложение квадратного трехчлена на множители», «График функции у=ах2+bx+c», «Решение неравенств второй степени. Метод интервалов». В соответствии с этим можно провести 3 или 4 зачета, разбив, например, второй раздел на две части: «График функции у = ax2+с» и «График функции y=ax2+bx+c».

При этом можно составить несколько аналогичных по содержанию вариантов для зачета. Это целесообразно при составлении зачета по первому и последнему из указанных разделов. Если же раздел содержит большое число типов задач обязательного уровня, то, так же как и в тематических зачетах. При составлении заданий можно составить разные варианты. При этом, однако, важно предусмотреть, чтобы совокупность вопросов охватывались все основное содержание подвергаемого проверке материала и чтобы у каждого ученика были проверены основные виды умений. Так, например, проверяя усвоение графика квадратного трехчлена, необходимо проверить умение строить соответствующий график, а также читать его, предложив каждому ученику ответить на один из вопросов: определить промежутки знакопостоянства функции; найти по графику промежутки возрастания и убывания функции.

Приведем примеры текущих зачетов (обязательные задания) по указанным разделам темы «Квадратный трехчлен».

Зачет № 1. Разложение квадратного трехчлена на множители

Разложите на множители квадратный трехчлен:

Вариант 1. 1)

; 2)
.

Вариант 2. 1)

; 2)
.

Вариант 3. 1)

; 2)
.

Вариант 4. 1)

; 2)
.

Зачет № 2. График функции

Вариант 1

1) Постройте график функции

.

2) С помощью графика функции определите, при каких значениях

.

Вариант 2

1) Постройте график функции

.

2) С помощью графика функции определите, при каких значениях

функция возрастает; убывает

Вариант 3

1) Постройте график функции

.

2) С помощью графика функции найдите, чемe равно значение функции при

; при каких значениях
.

Вариант 4

1) Постройте график функции

.

2) С помощью графика функции найдите те значения

, при которых
.

Зачет № 3. Неравенства второй степени. Метод интервалов.

Решите неравенство:

Вариант 1. 1)

; 2)
; 3)
.

Вариант 2. 1)

; 2)
; 3)
.

Вариант 3. 1)

; 2)
; 3)
.

Вариант 4. 1)

; 2)
; 3)
[3].

4. Подготовка к зачету

Учеников надо специально готовить к зачету. В процессе изучения темы должно отводиться специальное время на формирование и отработку умений решать задачи обязательного уровня. Поэтому при планировании уроков целесообразно предусмотреть такую работу, а в ходе ее проведения на уроке акцентировать на ней внимание учащихся.