Смекни!
smekni.com

Зачет как одна из форм контроля знаний учащихся по алгебре в 8 классе (стр. 9 из 11)

Вводится оценка «за общее впечатление от письменной работы». Сущность ее состоит в определении отношения учителя к внешнему виду работы (аккуратность, эстетичность, привлекательность, чистота, оформленность и др.) Эта отметка ставится как дополнительная, в журнал не вносится.

Таким образом, в тетрадь (и в дневник) учитель выставляет 2 отметки (например, 5/3): за правильность выполнения учебной задачи (отметка в числителе) и за общее впечатление от работы (отметка в знаменателе). Снижение отметки «за общее впечатление от работы» допускается, если:

- в работе имеется не менее 2 неаккуратных исправлений;

- работа оформлена небрежно, плохо читаема, в тексте много зачеркиваний, клякс, неоправданных сокращений слов, отсутствуют поля и красные строки.

Данная позиция учителя в оценочной деятельности позволит более объективно оценивать результаты обучения и «развести» ответы на вопросы «чего достиг ученик в освоении предметных знаний?» и «каково его прилежание и старание?»

Характеристика словесной оценки (оценочное суждение)

Словесная оценка есть краткая характеристика результатов учебного труда школьников. Эта форма оценочного суждения позволяет раскрыть перед учеником динамику результатов его учебной деятельности, проанализировать его возможности и прилежание. Особенностью словесной оценки являются её содержательность, анализ работы школьника, чёткая фиксация (прежде всего!) успешных результатов и раскрытие причин неудач. Причём эти причины не должны касаться личностных характеристик учащегося («ленив», «невнимателен», «не старался»).

Оценочное суждение сопровождает любую отметку в качестве заключения по существу работы, раскрывающего как положительные, так и отрицательные её стороны, а также способы устранения недочётов и ошибок.

Математика Оценивание письменных работ

В основе данного оценивания лежат следующие показатели: правильность выполнения и объем выполнения задания.

Классификация ошибок и недочетов, влияющих на снижение оценки.

Ошибки:

- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;

- неправильный выбор действий, операций;

- неверные вычисления в случае, когда цель задания - проверка вычислительных умений и навыков;

- пропуск части математических выкладок, действий, операций, существенно влияющих на получение правильного ответа;

- несоответствие пояснительного текста, ответа задания, наименования величин выполненным действиям и полученным результатам;

несоответствие выполненных измерений и геометрических построений заданным параметрам. Недочеты:

- неправильное списывание данных (чисел, знаков, обозначений, величин);

- ошибки в записях математических терминов, символов при оформлении математических выкладок;

- неверные вычисления в случае, когда цель задания не связана с проверкой вычислительных умений и навыков;

- наличие записи действий;

- отсутствие ответа к заданию или ошибки в записи ответа.

Снижение отметки за общее впечатление от работы допускается в случаях, указанных выше.

Оценивание устных ответов

В основу оценивания устного ответа учащегося положены следующие показатели:

правильность, обоснованность, самостоятельность, полнота.

Ошибки:

- неправильный,ответ на поставленный вопрос;

- неумение ответить на поставленный вопрос или выполнение задания с помощью учителя;

- при правильном выполнении задания неумение дать соответствующие объяснения. Недочеты:

- неточный или неполный ответ на поставленный вопрос;

- при правильном ответе неумение самостоятельно или полно обосновать и проиллюстрировать его;

- неумение точно сформулировать ответ решенной задачи;

- медленный темп выполнения задания, не являющийся индивидуальной особенностью школьника;

- неправильное произношение математических терминов.

Особенности организации контроля по математике

Текущий контроль по математике можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить не реже 1 раза в неделю в форме самостоятельной работы или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (напри­мер, умения сравнивать натуральные числа, умения находить площадь прямоугольника и др.).

Тематический контроль по математике в начальной школе проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы:

приемы устных вычислений, действия с многозначными числами, измерение величин и др.

Среди тематических проверочных работ особое место занимают работы, с помощью которых проверяются знания табличных случаев сложения, вычитания, умножения и деления. Для обеспечения самостоятельности учащимся подбирается несколько вариантов работы, каждый из которых содержит 30 примеров (соответственно по 15 на сложение и вычитание или умножение и деление). На выполнение такой работы отводится 5-6 минут урока.

Итоговый контроль по математике проводится в форме контрольных работ комбиниро­ванного характера (они содержат арифметические задачи, примеры, задания геометрического характера и др.). В этих работах сначала отдельно оценивается выполнение задач, примеров, заданий геометрического характера, а затем выводится итоговая отметка за всю работу.


Приложение 3

Анкета для учителей математики

1. Ф.И.О.

2. В какой школе преподаете:

3. Какими методами пользуетесь при проверке знаний, умений учащихся:

4. Пользуетесь вы или нет зачетной системой при проверке знаний, умений учащихся:

5. Как вы относитесь к урокам такого типа:

6. Что вам больше нравится в этих уроках:

7. Что вы видите положительного в уроках-зачетах:

8. Что вас не устраивает в уроках такого типа:

9. Какие новые методы проверки вам известны:

10. Как вы считаете надо ли проверять знания учащихся и для чего это нужно?


Приложение 4

Билет № 1.

1) Параллелограмм (определение). Его св-ва (сформулировать все и доказать одно свойство).

2) Квадратный трехчлен (определение). Теорема о разложении кв. трехчлена на множители.

Билет М 2.

1) Параллелограмм (определение). Его признаки (сформулировать все и доказать один признак).

2) Теорема Виета (доказательство). Теорема обратная теореме Виета (формулировка)

Билет № 3.

1) Прямоугольник (св-ва, определение, признак). Св-во диагоналей прямоугольника (Доказать)

2) Решение неполных кв. уравнений.

Билет № 4.

1) Ромб (определение, св-ва). Доказать св-ва диагоналей ромба.

2) Вывод формул корней кв. уравнения.

Билет № 5.

1) Определение прямоугольника. Теорема о площади прямоугольника.

2) Решение кв. уравнений со вторым четным коэффициентом.


Билет № 6.

1) Определение параллелограмма. Теорема о площади параллелограмма.

2) Множество действительных чисел.

Билет № 7.

1) Определение треугольника. Теорема о площади треугольника (^=1\2а На)

2) Определения кв. корня из неотрицательного числа. Св-ва кв. корня (записать все равенства). Доказательство теоремы о кв. корне из произведения.

Билет № 8.

1) Определение трапеции. Теорема о площади трапеции.

2) Определение кв. корня из неотрицательного числа. Доказательство теоремы о кв. корне из частного.

Билет № 9.

1) площадь выпуклого четырехугольника с взаимно перпендикулярными диагоналями. Площадь ромба и квадрата (Формулы)

2) Функция у=^х. Ее график, св-ва.

Билет № 10.

1) Теорема Пифагора (Доказательство). Теорема обратная теореме Пифагора (формулировка)

2) построение графиков функций у=Г(х+Ь), у=цх)+а, у=Г(х+Ь)+а, у=-цх), если известен график функций у^х).


Билет № 11.

1) зт, со5,1§, с1§ острого угла в прямоугольном треугольнике. Нахождение их значения для угла 30°.2) функция у=к\х (к>0), ее график и св-ва.

Билет № 12.

1) зт, со8,1§, с1§ острого угла в прямоугольном треугольнике. Нахождение их значения для угла 45°

2) функция у=к&bsol;х (к<0), ее график и св-ва.

Билет № 13.

1) 8т, со8, &bsol;%, с1§ острого угла в прямоугольном треугольнике. Нахождение их значения для угла 60°

2) функция у=ах (а>0), ее график и св-ва.

Билет № 14.

1) определение подобных треугольников, признак подобия треугольников (формулировка всех и доказательство одного из них).

2) функция у=ах2 (а<0), ее график и св-ва.

Билет № 15.

1) определение средней линии треугольника. Теорема о средней линии треугольника.

2) Теорема о графике функций у=ах2 + вх + с, алгоритм построения его.

Билет №16.

1) Касательная к окружности (определение, св-ва, признаки). Доказательство теоремы св-ве касательной к окружности.

2) Алгебраические дроби, основное св-во, сложение и вычитание алгебраических дробей

Билет №17.

1) Вписанный угол, теорема о вписанном угле.

2) Алгебраические дроби, умножение и деление алгебраических дробей, возведение их в степень.


Приложение 5

Срезовый тест по алгебре

1. Разложите на множители:

1. x2y2-16z2

а) (xy-yz)2 в) (xy-4z)(xy+4z)

б) (x-y-16z)2 г) (xy-16z)(xy+16z)

2. 1+6m+9m2

а) не разлагается на множители в) (3m-1)2

б) (3m+1)(3m-1) г) (3m+1)2

3. 25a2-10a+1

а) (5a-1)2в) (5a-1)(5a+1)

б) (5a+1)2 г) не разлагается на множители

4. m3-27

а) (m-3)(m2+3m+9) в) (m-3)(m2+6m+9)

б) (m+3)(m2-3m+9) г) (m+3)(m2-6m+9)

5. 1+8b3