Вводится оценка «за общее впечатление от письменной работы». Сущность ее состоит в определении отношения учителя к внешнему виду работы (аккуратность, эстетичность, привлекательность, чистота, оформленность и др.) Эта отметка ставится как дополнительная, в журнал не вносится.
Таким образом, в тетрадь (и в дневник) учитель выставляет 2 отметки (например, 5/3): за правильность выполнения учебной задачи (отметка в числителе) и за общее впечатление от работы (отметка в знаменателе). Снижение отметки «за общее впечатление от работы» допускается, если:
- в работе имеется не менее 2 неаккуратных исправлений;
- работа оформлена небрежно, плохо читаема, в тексте много зачеркиваний, клякс, неоправданных сокращений слов, отсутствуют поля и красные строки.
Данная позиция учителя в оценочной деятельности позволит более объективно оценивать результаты обучения и «развести» ответы на вопросы «чего достиг ученик в освоении предметных знаний?» и «каково его прилежание и старание?»
Характеристика словесной оценки (оценочное суждение)
Словесная оценка есть краткая характеристика результатов учебного труда школьников. Эта форма оценочного суждения позволяет раскрыть перед учеником динамику результатов его учебной деятельности, проанализировать его возможности и прилежание. Особенностью словесной оценки являются её содержательность, анализ работы школьника, чёткая фиксация (прежде всего!) успешных результатов и раскрытие причин неудач. Причём эти причины не должны касаться личностных характеристик учащегося («ленив», «невнимателен», «не старался»).
Оценочное суждение сопровождает любую отметку в качестве заключения по существу работы, раскрывающего как положительные, так и отрицательные её стороны, а также способы устранения недочётов и ошибок.
Математика Оценивание письменных работ
В основе данного оценивания лежат следующие показатели: правильность выполнения и объем выполнения задания.
Классификация ошибок и недочетов, влияющих на снижение оценки.
Ошибки:
- незнание или неправильное применение свойств, правил, алгоритмов, существующих зависимостей, лежащих в основе выполнения задания или используемых в ходе его выполнения;
- неправильный выбор действий, операций;
- неверные вычисления в случае, когда цель задания - проверка вычислительных умений и навыков;
- пропуск части математических выкладок, действий, операций, существенно влияющих на получение правильного ответа;
- несоответствие пояснительного текста, ответа задания, наименования величин выполненным действиям и полученным результатам;
несоответствие выполненных измерений и геометрических построений заданным параметрам. Недочеты:
- неправильное списывание данных (чисел, знаков, обозначений, величин);
- ошибки в записях математических терминов, символов при оформлении математических выкладок;
- неверные вычисления в случае, когда цель задания не связана с проверкой вычислительных умений и навыков;
- наличие записи действий;
- отсутствие ответа к заданию или ошибки в записи ответа.
Снижение отметки за общее впечатление от работы допускается в случаях, указанных выше.
Оценивание устных ответов
В основу оценивания устного ответа учащегося положены следующие показатели:
правильность, обоснованность, самостоятельность, полнота.
Ошибки:
- неправильный,ответ на поставленный вопрос;
- неумение ответить на поставленный вопрос или выполнение задания с помощью учителя;
- при правильном выполнении задания неумение дать соответствующие объяснения. Недочеты:
- неточный или неполный ответ на поставленный вопрос;
- при правильном ответе неумение самостоятельно или полно обосновать и проиллюстрировать его;
- неумение точно сформулировать ответ решенной задачи;
- медленный темп выполнения задания, не являющийся индивидуальной особенностью школьника;
- неправильное произношение математических терминов.
Особенности организации контроля по математике
Текущий контроль по математике можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить не реже 1 раза в неделю в форме самостоятельной работы или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (например, умения сравнивать натуральные числа, умения находить площадь прямоугольника и др.).
Тематический контроль по математике в начальной школе проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы:
приемы устных вычислений, действия с многозначными числами, измерение величин и др.
Среди тематических проверочных работ особое место занимают работы, с помощью которых проверяются знания табличных случаев сложения, вычитания, умножения и деления. Для обеспечения самостоятельности учащимся подбирается несколько вариантов работы, каждый из которых содержит 30 примеров (соответственно по 15 на сложение и вычитание или умножение и деление). На выполнение такой работы отводится 5-6 минут урока.
Итоговый контроль по математике проводится в форме контрольных работ комбинированного характера (они содержат арифметические задачи, примеры, задания геометрического характера и др.). В этих работах сначала отдельно оценивается выполнение задач, примеров, заданий геометрического характера, а затем выводится итоговая отметка за всю работу.
Приложение 3
Анкета для учителей математики
1. Ф.И.О.
2. В какой школе преподаете:
3. Какими методами пользуетесь при проверке знаний, умений учащихся:
4. Пользуетесь вы или нет зачетной системой при проверке знаний, умений учащихся:
5. Как вы относитесь к урокам такого типа:
6. Что вам больше нравится в этих уроках:
7. Что вы видите положительного в уроках-зачетах:
8. Что вас не устраивает в уроках такого типа:
9. Какие новые методы проверки вам известны:
10. Как вы считаете надо ли проверять знания учащихся и для чего это нужно?
Приложение 4
Билет № 1.
1) Параллелограмм (определение). Его св-ва (сформулировать все и доказать одно свойство).
2) Квадратный трехчлен (определение). Теорема о разложении кв. трехчлена на множители.
Билет М 2.
1) Параллелограмм (определение). Его признаки (сформулировать все и доказать один признак).
2) Теорема Виета (доказательство). Теорема обратная теореме Виета (формулировка)
Билет № 3.
1) Прямоугольник (св-ва, определение, признак). Св-во диагоналей прямоугольника (Доказать)
2) Решение неполных кв. уравнений.
Билет № 4.
1) Ромб (определение, св-ва). Доказать св-ва диагоналей ромба.
2) Вывод формул корней кв. уравнения.
Билет № 5.
1) Определение прямоугольника. Теорема о площади прямоугольника.
2) Решение кв. уравнений со вторым четным коэффициентом.
Билет № 6.
1) Определение параллелограмма. Теорема о площади параллелограмма.
2) Множество действительных чисел.
Билет № 7.
1) Определение треугольника. Теорема о площади треугольника (^=1\2а На)
2) Определения кв. корня из неотрицательного числа. Св-ва кв. корня (записать все равенства). Доказательство теоремы о кв. корне из произведения.
Билет № 8.
1) Определение трапеции. Теорема о площади трапеции.
2) Определение кв. корня из неотрицательного числа. Доказательство теоремы о кв. корне из частного.
Билет № 9.
1) площадь выпуклого четырехугольника с взаимно перпендикулярными диагоналями. Площадь ромба и квадрата (Формулы)
2) Функция у=^х. Ее график, св-ва.
Билет № 10.
1) Теорема Пифагора (Доказательство). Теорема обратная теореме Пифагора (формулировка)
2) построение графиков функций у=Г(х+Ь), у=цх)+а, у=Г(х+Ь)+а, у=-цх), если известен график функций у^х).
Билет № 11.
1) зт, со5,1§, с1§ острого угла в прямоугольном треугольнике. Нахождение их значения для угла 30°.2) функция у=к\х (к>0), ее график и св-ва.
Билет № 12.
1) зт, со8,1§, с1§ острого угла в прямоугольном треугольнике. Нахождение их значения для угла 45°
2) функция у=к\х (к<0), ее график и св-ва.
Билет № 13.
1) 8т, со8, \%, с1§ острого угла в прямоугольном треугольнике. Нахождение их значения для угла 60°
2) функция у=ах (а>0), ее график и св-ва.
Билет № 14.
1) определение подобных треугольников, признак подобия треугольников (формулировка всех и доказательство одного из них).
2) функция у=ах2 (а<0), ее график и св-ва.
Билет № 15.
1) определение средней линии треугольника. Теорема о средней линии треугольника.
2) Теорема о графике функций у=ах2 + вх + с, алгоритм построения его.
Билет №16.
1) Касательная к окружности (определение, св-ва, признаки). Доказательство теоремы св-ве касательной к окружности.
2) Алгебраические дроби, основное св-во, сложение и вычитание алгебраических дробей
Билет №17.
1) Вписанный угол, теорема о вписанном угле.
2) Алгебраические дроби, умножение и деление алгебраических дробей, возведение их в степень.
Приложение 5
Срезовый тест по алгебре
1. Разложите на множители:
1. x2y2-16z2
а) (xy-yz)2 в) (xy-4z)(xy+4z)
б) (x-y-16z)2 г) (xy-16z)(xy+16z)
2. 1+6m+9m2
а) не разлагается на множители в) (3m-1)2
б) (3m+1)(3m-1) г) (3m+1)2
3. 25a2-10a+1
а) (5a-1)2в) (5a-1)(5a+1)
б) (5a+1)2 г) не разлагается на множители
4. m3-27
а) (m-3)(m2+3m+9) в) (m-3)(m2+6m+9)
б) (m+3)(m2-3m+9) г) (m+3)(m2-6m+9)
5. 1+8b3