Смекни!
smekni.com

Формування у молодших школярів уміння розв'язувати текстові задачі (стр. 4 из 14)

3. Задачі на знаходження невідомого множника.

4. Задачі на знаходження невідомого діленого.

5. Задачі на знаходження невідомого дільника.

Задачі на ділення з остачею.

Задачі на знаходження частини числа.

Задачі на знаходження числа за його частиною.

4 клас

Задачі на збільшення і зменшення числа на кілька одиниць (непряма форма).

Задачі на збільшення та зменшення числа у кілька разів (непряма форма).

3. Задачі на знаходження площі прямокутника.

4. Задачі на час: знаходження тривалості події, початку або її закінчення.

1.3 Складові процесу розв'язування задач

Навчити дітей розв'язувати задачі - означає навчити їх установлювати зв'язки між даними і шуканим і відповідно до цього вибирати, а потім і виконувати арифметичні дії.

Центральною ланкою в умінні розв'язувати задачі є засвоєння зв'язків між даними і шуканим. Від того, наскільки добре засвоєні учнями ці зв'язки, залежить їхнє уміння розв'язувати задачі.

Враховуючи це, у початкових класах працюють над групами задач, розв'язування яких ґрунтується на тих самих зв'язках між даними та шуканим, а вирізняються вони конкретним змістом і числовими даними. Групи таких задач називають задачами одного виду.

Робота над задачами не повинна зводитися до натаскування учнів на розв'язання задач спочатку одного виду, потім другого і т.д. [4,160]

Основна мета - навчити дітей свідомо встановлювати певні зв'язки між даними і шуканим у різних життєвих ситуаціях, передбачаючи поступове їх ускладнення. Щоб добитись успіху в навчанні, потрібно вчителю передбачити в методиці навчання розв'язування задач одною виду різні ступені, які мають свою мету.

В залежності від цього можна виділити три ступені методики розв'язування задач.

На першому ступені вчитель готує дітей до розв'язування задач розглядуваного виду. Саме на цьому ступені учні повинні засвоїти зв'язки, на основі яких вони вибиратимуть дії в процесі розв'язування таких задач.

На другому ступені вчитель ознайомлює учнів з розв'язуванням задач розглядуваного виду. Тут учні вчаться встановлювати зв'язки між даними і шуканим і на цій основі вибирати арифметичні дії. Вони вчаться переходити від конкретної ситуації, вираженої в задачі, до відповідної арифметичної дії.

Внаслідок такої роботи учні ознайомлюються з способом розв'язування задач цього виду.

На третьому ступені вчитель закріплює вміння розв'язувати задачі розглядуваного виду. На цьому ступені учні мають навчитися розв'язувати будь-яку задачу розглядуваного виду незалежно від її конкретного змісту, тобто вони мають узагальнити спосіб розв'язування задач цього виду.

Розглянемо детальніше методику роботи на кожному з названих ступенів.

Підготовча робота до розв'язування задач того чи іншого виду залежить від того, на який зв'язок між даними і шуканим треба спиратися під час вибору арифметичних дій. Відповідно до цього виконують ряд спеціальних вправ.

У багатьох випадках перед розв'язуванням задач виконують операції над множинами.

Так, ознайомленню з розв'язуванням більшості простих задач повинні передувати вправи на оперування множинами, причому елементами множини мають бути конкретні предмети (палички, геометричні фігури, вирізані з паперу малюнки, самі учні).

Наприклад, до введення простих задач на знаходження суми пропонують вправи на об'єднання множин.

Наприклад. Дістаньте картинки, па яких намальованій білочки. (Діти виконують). На дереві сиділо 4 білочки. До них прибігло ще 2 білочки. Скільки тепер білочок? (Діти лічать малюнки). Ми до 4 додали 2 (показує на малюнки) і дістали 6.

Підготовкою до розв'язування задач на віднімання буде виконання операції вилучення частини даної множини.

Наприклад. На лужку паслося 7 корів. (Діти дістають і викладають малюнки). 3 з них пішли до водопою. Скільки корів залишилося на лужку? (Діти лічать малюнки). Ми від 7 відняли 3 і дістали 4.

Виконання підготовки до розв'язання задач на множення буде виконання операції об'єднання рівно чисельних множин, на ділення - поділ множини на ряд рівночисельних множин.

Наприклад. Пропонується вправа - покладіть по 2 кружки 4 рази. Скільки всього кружків ви поклали?

=8

Учителька роздала учням 15 зошитів по 3 зошити кожному. Скільки учнів одержали зошити?

За допомогою операцій над множинами розкривають зміст виразів "більше на... ", "менше на... ", "більше в кілька разів", "менше в кілька разів", що є підготовкою для введення задач, пов'язаних з поняттям різницевого та кратного відношення. Розглянемо декілька вправ на порівняння під час вивчення дій віднімання і додавання.

1. Вправи на порівняння під час вивчення дій віднімання і додавання.

1)За малюнком замість квадратів у записах поставте знак арифметичної дії

5 2

2) Запишіть математично

3+4=7

3) У квадратах поставте числа 3, 5 або 8 у записах:

Було

Прибігло

Стало

На таких вправах відшліфовується розуміння дітьми математичного змісту різних словесних зв'язків між величинами та їх позначень.

Більшість арифметичних задач пов'язана з величинами - довжина, маса, місткість, час, площа. Тому до включення в ту чи іншу задачу нової величини треба ознайомити дітей із цією величиною. Причому дітям корисно для подальшої роботи записувати значення деяких величин в окремий зошит чи блокнот (ціни на окремі товари, швидкості різних видів транспорту, відстані між містами, найближчими селищами).

Арифметичні дії під час розв'язування багатьох задач вибирають на основі зв'язків, які існують між величинами. Щоб у процесі вибору дій діти використовували і усвідомлювали ці зв'язки, треба розкрити зв'язки між величинами, розв'язуючи задачі на основі їх конкретного змісту.

Наприклад, нехай потрібно розв'язати задачу: "Купили 3 конверти по 60 к. за штуку. Скільки заплатили грошей?" Для розв'язання цієї задачі використовують знання зв'язку: коли відомо ціну товару і його кількість, то можна знайти вартість дією множення.

Щоб учні засвоїли той або інший зв'язок, треба організувати цілеспрямовані спостереження. Так, щоб розкрити зв'язок між ціною, кількістю і вартістю, доцільно організувати екскурсію в магазин, де учні ознайомляться з ціною, запишуть ціни деяких товарів в свої довідники і спостерігатимуть процес купівлі-продажу. Потім на уроці складуть ряд простих задач на знаходження вартості за відомою ціною і кількістю, розв'яжуть їх спираючись на знання конкретного змісту дії множення. Розглянувши розв'язання, учні помітять, що коли відома ціна і кількість, то вартість знаходять дією множення. Пізніше ці знання учні використовуватимуть під час розв'язування задач.

Провівши відповідну підготовчу роботу, можна перейти до ознайомлення дітей з розв'язуванням задач розглядуваного виду.

Саме на цьому другому ступені навчання розв'язування задач, доцільно дотримуватися таких етапів у методиці роботи над задачею:

І - ознайомлення із змістом задачі;

ІІ - шукання розв'язання задачі;

ІІІ - розв'язання задачі;

ІV - перевірка розв'язку задачі і формулювання відповіді.

Ці етапи органічно пов'язані між собою, і роботою на кожному з них на цьому ступені керує переважно вчитель [5,18].

Розглянемо докладніше методику роботи на кожному етапі.

І). Ознайомлення із змістом задачі.

Усвідомлення змісту задачі - необхідна умова її розв'язання. "Учень не повинен приступати до розв'язування задачі, не зрозумівши її умови. Тому ознайомлення із змістом задачі містить власне опанування її змісту і перевірку усвідомлення його дітьми.

Учень ознайомиться із задачею з слів учителя або самостійно. Ступінь самостійності учнів залежить від рівня їхньої підготовленості і мети розв'язання задачі. Приступаючи до розв'язування задачі, важливо сприйняти її в цілому, а потім вже розбивати на окремі частини.

При фронтальному ознайомленні вчитель читає або переказує задачу двічі. Першого разу читають з метою ознайомлення з її змістом у цілому. Другого разу задачу читають частинами і так, щоб кожна частина містила певну смислову "одиницю" тексту. Поділ задачі па частини здебільшого передбачає виділення окремих числових даних. Під час другого читання нових задач доцільно на дошці записувати умову.

Читаючи задачу, вчитель паузами та інтонацією виділяє числові дані, слова, що визначають вибір дії та запитання задачі. Емоційне забарвлення голосу допомагає учням уявити ту життєву ситуацію, про яку йдеться в задачі. Тому, слухаючи задачу, дітям не варто стежити очима за текстом підручника. Якщо в задачі є мало відомі дітям терміни, то їх слід пояснити заздалегідь, застосовуючи при цьому предмети ілюстрування або рисунки.

Щоб перевірити, як учні усвідомили умову задачі, вчитель задає учням запитання (за змістом окремих частин) або пропонує переказати всю задачу.

З метою активізації контрольного повторення задачі слід іноді наперед поставити перед учнями те або інше завдання.

Наприклад.

"Послухайте задачу, повторіть вголос її запитання...

Прочитайте задачу самостійно і скажіть, що нам відомо про..."

Розглянуті вимоги стосуються і самостійного читання задач учнями. Діти повинні засвоїти, що в процесі читання треба запам'ятати або виписати числові дані, виділити запитання задачі і найбільш важливі слова, які стосуються даних і шуканого числа, а також з'ясувати незрозумілі слова.