У випадку використання індивідуальної допомоги завдання для самостійної роботи пропонується у кількох варіантах. В одному чи двох з них міститься додаткова інформація. розрахована на допомогу в розв'язуванні задач. Реалізується цей вил диференціації найчастіше через індивідуальні картки. Розгляньмо прийоми допомоги [5].
Для конкретизації задачі до задачі додається малюнок або її короткий запис. При цьому слід прочитати задачу, розглянути до неї малюнок і обґрунтувати дію, якою вона розв'язується. Розв'язання записати в зошит.
При повідомленні відповіді до задачі або числових значень виразів, коли розв'язують задачу на 2–3 дії або знаходять значення виразу, то знання відповіді допомагає аналізувати хід роботи. Знаючи відповідь, учень самостійно виправляє допущену помилку.
Використовуючи навідні вказівки чи запитання, слід мати на увазі, що вказівки безпосередньо пов'язані з конкретним змістом задач, але взагалі вони бувають на зразок таких: це задача на три дії; для розв'язання задачі буде потрібно виконати дію віднімання, а потім дію множення; подумай, як знайти ціну за вартістю і кількістю товару; будь уважний: блокнотів купили стільки, скільки зошитів; якою дією дізнаємось, у скільки разів одне число більше від іншого?
За умови використання такого виду допомоги учням, як початок розв'язування задачі, у картці подається виконання першої дії або початок аналізу числових даних і запитання для першої дії.
Також вчителі використовують подання схеми розв'язування чи графічного зображення результату аналізу задачі [65, 23]. Користуючись схемою, учням слід розв'язати задачу, склавши вираз. Використовується й подання інформації, потрібної для розв'язування завдання. Такою інформацією є правила, тлумачення залежностей між величинами та ін. Наприклад: а) щоб знайти невідоме зменшуване, до різниці слід додати від'ємник; б) щоб за відомою площею прямокутника і його довжиною знайти ширину, треба площу поділити на довжину; в) щоб скласти обернену задачу, потрібно одне з даних (яке саме?) вважати невідомим.
Наприклад, після колективного розбору умови, змісту і скороченого запису ми пропонували дітям наступне:
– Підніміть руку, хто може цю задачу розв’язати самостійно? (Сильніші учні).
– Підніміть руку, хто буде працювати над розв’язанням задачі разом зі мною? (Середні і слабкі учні).
Після розбору задачі від числових даних ми пропонували школярам:
– Хто вже виконав розв’язання задачі, розв’яжіть задачу другим способом. (Для сильніших учнів, при умові, що існує другий спосіб розв’язування задачі).
Зі слабшими учнями ми працювали індивідуально, стежили за записами і пояснювали незрозуміле додатково.
Після розв’язання задачі ми запитували одного із середніх учнів, яку відповідь одержали.
Далі сильніший учень зачитував розв’язання задачі другим способом із поясненням [62, 41].
Наведені прийоми допомоги, полегшення чи ускладнення завдань за умови неодноразового застосування кожного з них забезпечать практичну основу для реалізації принципу диференційованого підходу в навчанні молодших школярів. Застосовуючи принцип диференційованого підходу, вчитель має бути тактовним, спиратися на позитивні риси характеру дитини. Не слід оперувати словами «сильні учні», «слабкі учні». Краще відзначити ступінь просування дітей в опануванні вмінь, а також самостійність, оригінальність розв'язку і т. ін.
Розглянемо методику роботи з молодшими школярами над системою задач на рух [41–44].
Розв'язуванню задач на зустрічний рух передувала тривала робота з розв'язування простих та складених задач на знаходження швидкості, часу та відстані. Поняття швидкості ми вводили на основі життєвого досвіду дітей та безпосередніх практичних дій. Підготовча робота до розв'язування задач, пов'язаних а рухом, передбачала узагальнення уявлень дітей про рух; ознайомлення з новою величиною – швидкістю, розкриття зв'язків між величинами: швидкість, час, відстань. Для цього ми провели спеціальну екскурсію для спостереження за рухом транспорту, після чого організували спостереження в умовах класу, де рух демонстрували самі діти.
Спостерігаючи такі ситуації в умовах класу, ми вчили дітей будувати креслення з допомогою умовних позначень: відстань позначають відрізком; місце (пункт) відправлення, зустрічі, прибуття тощо позначають або точкою на відрізку і відповідною буквою, або рискою, або прапорцем; напрям руху позначають стрілкою.
Під час ознайомлення із швидкістю учні визначали швидкість свого руху пішки. Для цього в спортзалі позначалася «замкнута доріжка», поділена на відрізки по 10 м, щоб зручніше було визначати шлях, який проходив кожний учень. Ми пропонували дітям іти доріжкою протягом 2-х хвилин. Учні, користуючись десятиметровими позначками, легко обчислювали пройдену відстань. Ми повідомляли, що відстань, яку пройшов учень за хвилину, називають його швидкістю. Учні називали швидкість свого руху. Потім ми називали швидкості деяких видів транспорту.
Зв'язки між величинами: швидкість, час, відстань – розкривалися за такою самою методикою, як і зв'язки між іншими пропорційними величинами. Внаслідок цієї роботи діти засвоювали такі зв'язки: якщо відомі відстань і час руху, то можна знайти швидкість дією ділення; якщо відомі швидкість і час руху, то можна знайти відстань дією множення. Якщо відомі відстань і швидкість, то можна знайти час руху дією ділення.
Далі, спираючись на ці знання, діти розв'язували складені задачі з величинами швидкість, час, відстань. Під час роботи над цими задачами часто використовувалися ілюстрації у вигляді креслення.
На підготовчому етапі ми виходили з важливості усвідомлення дітьми поняття «швидкість». Для цього ми пропонували учням таку систему завдань та запитань:
– Хто швидше рухається – пішохід чи велосипедист, велосипедист чи машина?
– Яке слово вживають водії, порівнюючи швидкість руху різних марок машин? Що ж таке швидкість, як ви гадаєте?
– Чому деякі поїзди називають швидкими, чим вони відрізняються від звичайних?
– Допоможіть хлопчикам, які посперечалися, хто з них швидше прийшов до школи:
а) Петрик пройшов 120 м за 5 хвилин, а Дмитрик – 120 м за 3 хвилини. Хто швидше йшов?
б) Микола пройшов 300 м за 6 хвилин, а Сергій – 450 м за 9 хвилин. Хто швидше йшов?
в) Антон пройшов 280 м за 7 хвилин, а Михайло – 480 м за 16 хвилин. Хто швидше йшов?
Підготовча робота даного змісту готувала молодших школярів до розв’язування складених задач на рух. Розглянемо методику роботи над задачами на руху зустрічному напрямку.
Задача 1. З пристані Київ до пристані Кременчук вийшов теплохід, і одночасно йому назустріч з пристані Кременчук вийшов катер. Теплохід ішов зі швидкістю 30 км/год, а катер – 24 км/год. Через 5 год вони зустрілися. Яка відстань між пристанями? Під час повторення змісту задачі вчитель креслить на дошці ілюстрацію:
Бесіда. Що означає: «Через 5 год вони зустрілися»? (Теплохід і катер з моменту виходу до моменту зустрічі були в дорозі 5 год.) Яку відстань пройшов за 5 год теплохід? («Від пристані Київ до прапорця», – показує один учень біля дошки.) Яку відстань пройшов катер за 5 год? (Другий учень показує на кресленні.) То з яких двох частин складається шукана відстань між пристанями? (З відстаней, які пройшов кожен теплохід за 5 год.) Чи можемо ми взнати відстань, яку пройшов теплохід до зустрічі? (Можемо, бо відомо його швидкість і час руху до зустрічі.) Чи можемо взнати відстань, яку пройшов до зустрічі катер? (Можемо.)
А коли обидві відстані будуть відомі, про що зможемо дізнатися? (Про відстань між пристанями.) Давайте запишемо розв'язання виразом. Що знайдемо в першій дії? Якою дією? (Вчитель пише на дошці, а учні в зошитах: 30 • 5.) Про що дізнаємося в другій дії? Якою дією? Поруч з'являється другий запис: 30 • 5; 24 • 5. Про що дізнаємося в третій дії? Чого бракує, щоб скласти остаточний вираз? (Вписують знак «+»: 30 • 5 + 24 • 5.) Чи потрібні дужки? Учні усно обчислюють проміжні результати. Записи мають вигляд: 30 • 5 + 24 • 5 = 150 + 120 = 270 (км).
Ми розв'язали задачу першим способом. Її можна розв'язати і по іншому. Чи можемо ми взнати, на скільки кілометрів наблизяться теплохід і катер один до одного за першу годину руху? (Так, 30 + 24 = = 54 км.) На яку відстань наблизяться вони за другу годину? (На 54 км.) За третю годину? Четверту? П'яту? Ви бачите, що за кожну годину вони наближаються на 54 км, а таких годин до зустрічі пройшло 5. То про що тепер можна дізнатися? (Скільки кілометрів пройшли до зустрічі теплохід і катер разом.) А це і означає, що ми знайдемо відстань між пристанями. Якою дією? Хто запише на дошці вираз? (Учень записує: (30 + 24) • 5 = 270 (км).) Ви бачите, що відповіді в обох способах вийшли однакові.
Далі вчитель ще раз аналізує другий спосіб розв'язання. Звертає увагу учнів на те, що відстань, яку проходять за кожну годину теплохід і катер разом, дорівнює сумі швидкостей і називається швидкістю зближення. Щоб обчислити відстань між пристанями, ми швидкість зближення множили на час руху до зустрічі.
Задача 2. Відстань між пунктами А і В 18 км. З пункту А у напрямку до пункту В вийшов турист, а другий турист одночасно вийшов йому назустріч з пункту В. Через який час зустрінуться туристи, якщо їхні швидкості однакові і дорівнюють 3 км/год?
Графічна ілюстрація буде опорою під час аналізу задачі. Прапорець позначає місце зустрічі.
? год