№ п/п | УМІННЯ | Контрольний клас (%) | Експериментальний клас (%) |
1 | уміння демонструвати рухи у різних напрямках і різновидах (назустріч, у протилежному напрямку, у зустрічному напрямку, по колу, за течією, проти течії) | 84 | 98 |
2 | уміння визначати швидкість свого руху пішки | 78 | 92 |
3 | уміння порівнювати швидкість власного руху і швидкість транспорту | 82 | 90 |
4 | уміння порівнювати швидкість руху різних видів транспорту | 74 | 86 |
5 | уміння будувати креслення на основі умовних позначень | 68 | 84 |
Таблиця 2. Сформованість умінь визначати зв’язки між величинами в учнів експериментального і контрольного класів
№ п/п | УМІННЯ | Контрольний клас (%) | Експериментальний клас (%) |
1 | Уміння знаходити швидкість за часом і відстанню | 72 | 88 |
2 | Уміння знаходити відстань за швидкістю і часом | 70 | 86 |
3 | Уміння знаходити час за швидкістю і відстанню | 72 | 80 |
Таблиця 3. Сформованість практичних умінь в учнів експериментального і контрольного класів
№ п/п | УМІННЯ | МІКРОУМІННЯ | Контрольний клас (%) | Експериментальний клас (%) |
1 | уміння розв’язувати задачі на зустрічний рух | визначати швидкість зближення визначати час руху до зустрічі | 7476 | 8286 |
2 | уміння розв’язувати задачі на рух у протилежних напрямках | визначати швидкість віддалення визначати час віддалення | 7274 | 8482 |
3 | уміння розв’язувати задачі на рух в одному напрямку | визначати швидкість зближення (віддалення)визначати час зближення (віддалення) | 7176 | 8588 |
4 | уміння розв’язувати задачі на рух в одному напрямку | визначати швидкість зближення (віддалення)визначатичас зближення (віддалення) | 7072 | 8084 |
5 | уміння розв’язувати задачі на рух за течією чи проти течії | визначати власну швидкість катеравизначати швидкість катера за течієювизначати швидкість катера проти течіївизначати швидкість зближення і час зближення, коли катер наздоганяє плітвизначати швидкість зближення і час зближення, коли катер рухається назустріч плоту визначати швидкість віддалення і час віддалення, коли катер і пліт рухаються з одного пункту у протилежних напрямках | 687270707268 | 828682848079 |
6 | уміння розв’язувати задачі на визначення середньої швидкості руху | визначати середню арифметичну величинувизначати середню швидкість як середню арифметичну величину | 7276 | 8084 |
Отримані результати формуючого експерименту підтвердили гіпотезу, що використання запропонованої системи задач на рух позитивно вплинуло на формування відповідних уявлень і понять в учнів експериментального класу. Таким чином, ми отримали результати, які підтвердили ефективність формуючого експерименту. Із 26 учнів експериментального класу 6 школярів продемонстрували високий рівень розвитку математичних уявлень і понять, 16 – середній і 4 – низький.
У контрольному класі (24 учні) високий рівень розвитку математичних уявлень і понять має 2 учні, середній – 14 і низький 8 школярів. Порівняно з початком експерименту, показники сформованості відповідних умінь зросли в обох класах (початковий рівень відповідно 22 і 24%). Проте в експериментальному класі показники виявилися значно вищими (відповідно 76 і 82% – див. діаграму).
Діаграма. Загальний рівень сформованості математичних уявлень і понять в експериментальному і контрольному класах на початку і в кінці експерименту
Отже, у процесі використання розробленої системи задач на рух в учнів експериментального класу порівняно з контрольним значно підвищився рівень сформованості відповідних знань і умінь, що свідчить про ефективність застосовуваного напрямку роботи. Проведення експериментального дослідження дало змогу виявити і оцінити вищу ефективність використання пропонованої системи задач і простежити процес розвитку уявлень про рух і навичок розв’язування задач на рух порівняно з навчанням дітей в контрольному класі.
Висновки
Отже, значення математики у розвитку школярів як науки і навчального предмета важко перебільшити. Підтвердженням цього є цілий ряд педагогічної та методичної літератури з проблеми дослідження, серед яких чільне місце займають праці В. Московченка. та Л. Дудки.
Розв’язування задач займає значне місце у початковому курсі математики. При цьому термін «задача» вживається в різних значеннях і передбачає необхідність свідомого пошуку відповідних засобів для досягнення мети, яку добре видно, але яка безпосередньо недосяжна. У психологічному аспекті задача розглядається як свідома мета, що існує в певних умовах, а дії – як процеси, спрямовані на розв'язування задачі.
У навчанні математики задачі становлять специфічний розділ програми, матеріали якого учні мають засвоїти, і виступають як дидактичний засіб навчання, виховання і розвитку школярів. У методиці математики розрізняють математичні та арифметичні задачі. Під математичною задачею розуміють будь-яку вимогу обчислити, побудувати, довести що-небудь, що стосується кількісних відношень і просторових форм, побудованих людським розумом. Арифметичною задачею називають вимогу знайти числове значення деякої величини, якщо дано числові значення інших величин і лінійну залежність, яка пов'язує ці величини як між собою, так і з шуканою. У системі навчання учнів початкових класів загальноосвітньої школи переважають арифметичні задачі. Задачі на побудову, найпростіші доведення, а також завдання логічного порядку займають порівняно незначне місце.
Важливе значення для розв'язування текстових задач у навчальному процесі має ретельний добір навчальних завдань, які мають відповідати певним загально-методичним вимогам: забезпечувати засвоєння учнями програмового матеріалу з математики і, зокрема, формувати в них знання про задачу, її склад і процес розв'язування, вчити використовувати набуті знання в різних ситуаціях. При цьому зміст завдань має відповідати темі уроку і меті вивчення матеріалу, а числові дані – програмовим вимогам; послідовність застосування вправ має сприяти свідомому засвоєнню теоретичних знань і вмінню розв'язувати задачі, розвитку прийомів розумової і творчої діяльності школярів; забезпечувати автоматизацію елементарних дій, з яких складається діяльність при розв'язуванні задач; створювати умови для узагальнення способів діяльності; відповідати логіці й структурі процесу формування вмінь. Кількість задач повинна відповідати психологічним особливостям школярів і бути достатньою для формування певного вміння або навички.
Розв'язування задачі – це процес перетворення її умови, який здійснюється на основі знань з тієї галузі, до якої належить задача, певних логічних правил виводу і особливих правил інтуїтивного (евристичного) характеру. В найбільш загальному плані цей процес складається з таких етапів: аналіз задачі, пошук плану розв'язування; здійснення знайденого плану розв'язування; з'ясування того, що здобутий результат задовольняє вимогу задачі; аналіз розв'язування.
Дидактичні особливості задач на рух пов’язані з принципами навчання, формами організації навчальної роботи та методами навчання. Методика математики враховує дані дидактики, але в їх використанні відображає особливості своєї науки. У кожному з етапів задач на рух відчутні загальні положення дидактики.
Підготовча робота до розв'язування задач на рух передбачає узагальнення уявлень дітей про рух; ознайомлення з новою величиною – швидкістю, розкриття зв'язків між величинами: швидкість, час, відстань. Для узагальнення уявлень дітей про рух корисно проводять спеціальну екскурсію для спостереження за рухом транспорту, після чого організовують спостереження за рухом в умовах класу.
Під час роботи над задачами на рух можна виділити такі основні поняття: зустрічний рух (швидкість зближення; час зближення); рух у протилежних напрямках (швидкість віддалення; час віддалення); рух в одному напрямі (швидкість зближення (віддалення); час зближення (віддалення)); рух за течією чи проти течії (власна швидкість плавзасобу; його швидкість за течією; проти течії; швидкість зближення і час зближення; швидкість віддалення і час віддалення); рух по колу (швидкість зближення (віддалення) під час руху в одному і протилежних напрямках); середня швидкість руху (середня арифметична величина; середня швидкість).
Чималі труднощі під час розв'язування задач на рух у середніх та старших класах визначаються недостатньою роботою над даним типом задач у початковій школі. Однією з причин цього є недостатня сформованість у початкових класах понять про величини (час, відстань, швидкість) та їх пропорційну залежність. У молодших школярів необхідні поняття можливо формувати як на матеріалі чинних підручників початкових класів, так і доповнюючи його задачами, складеними на підґрунті типових задач, призначених для учнів середніх класів.