Курсова робота
"Формування в учнів обчислювальних навичок з табличного і позатабличного множення і ділення"
Вступ
Основою курсу математики початкових класів є лічба, нумерація і чотири арифметичні дії над цілими невід’ємними числами. Одна з особливостей арифметики полягає в тому, що багато з її положень хоч і важкі для доведення, але легко відкриваються спостереженням числових виразів. Вони відмінні від спостережень тих об’єктів, що безпосередньо впливають на органи чуття. Отже, виникає завдання розвивати в дітей спостережливість в галузі арифметики, а також уміння використовувати такі спостереження для індуктивних висновків.
Зміст арифметики містить також багато матеріалів для дедуктивних міркувань. Це, зокрема, стосується застосування властивостей арифметичних дій для обґрунтування прийомів обчислень, врахування залежностей між величинами під час розв’язування задач.
На методику викладання впливає не тільки зміст математики як навчального предмета, а й теоретичні положення математичної науки, що стосуються основ математики, її методології. Методика математики в своєму розвитку спирається, як і математика, на теорію пізнання. Для правильного розв’язання методичних проблем потрібно певною мірою враховувати ті етапи, які пройшла в своєму історичному розвитку математика як наука.
Основні математичні положення здобуті з дійсного світу за допомогою абстракції. У науці вони дістають самостійний логічний розвиток, а потім знову знаходять застосування в трудовій діяльності людей. Цей процес знаходить певне відображення і в методиці викладання математики. Учням треба показувати застосування математики в житті, в трудовій діяльності людини; тренувати в застосуванні математичних знань для виконання обчислювальних, розрахункових, графічних і вимірювальних робіт. Цим підвищується інтерес школярів до вивчення математики, закладаються основи правильного розуміння значення математики в житті людей.
Предметом курсової роботи є формування обчислювальних навичок на уроках математики в початковій школі.
Об’єктом роботи табличне і позатабличне множення і ділення.
Мета роботи – визначити, систематизувати та узагальнити методологію формування в учнів початкових класів обчислювальних навичок з табличного і позатабличного множення і ділення.
Завдання роботи:
· розглянути теоретико-методичні прийоми формування в учнів обчислювальних навичок;
· систематизувати та визначити найефективніші прийоми вивчення табличного і позатабличного множення і ділення;
· запропонувати систему уроків з використанням різних прийомів формування в учнів початкових класів обчислювальних навичок з табличного і позатабличного множення і ділення.
1. Теоретичні основи вивчення табличного і позатабличного множення та ділення
1.1 Освітні, виховні й розвивальні завдання навчання математики в початкових класах
У системі навчальних предметів початкової школи завдання і зміст вивчення математики є порівняно найбільш стабільними, проте і вони з часом зазнають деяких змін. Тому питання освітніх, виховних і розвивальних завдань навчання математики в початкових класах розкриємо з урахуванням сучасної концепції початкового курсу математики.
Більшість питань математичної освіти повинні бути засвоєні в початкових класах на такому рівні, щоб стати надбанням учнів на все життя. Решта питань програми з математики для початкових класів опрацьовується з метою підготовки до ґрунтовного вивчення відповідного матеріалу в наступних класах.
Математика в початкових класах має як практичне, так і духовне значення. Насамперед, курс математики початкових класів забезпечує подальше вивчення математики в середніх класах. Математичні знання, набуті в початкових класах, потрібні в повсякденному житті, під час вивчення інших дисциплін, для розуміння повідомлень засобів масової інформації. Молодші школярі отримують початкові уявлення про ті принципи і закони, що лежать в основі математичних чинників, що вивчаються. Це, насамперед, стосується десяткової системи числення та властивостей арифметичних дій. Істотним на початковому етапі є оволодіння обчислювальними вміннями і навичками.
Духовне призначення вивчення математики проявляється у внеску в розумовий розвиток, у становлення і розвиток моральних рис, в естетичне виховання людини. Розгляд математичних понять, розв’язування задач включає в процес пізнання різні прийоми і методи людського мислення.
Важливим завданням математики в початкових класах є розвиток пізнавальних здібностей у дітей. Необхідно розвинути у них уміння спостерігати й порівнювати, виділяти риси схожості та відмінності у порівнювальних об’єктах, виконувати такі мислительні операції, як аналіз, синтез, узагальнення, абстрагування, конкретизація.
Ведуча роль математики – у розвитку логічного мислення, формуванні алгоритмічного мислення, вихованні навичок розумової праці (планування, пошук раціональних шляхів, критичність). Формування в дітей уміння логічно мислити нерозривне з розвитком у них правильної, точної, лаконічної математичної мови. Заняття математикою мають бути школою виховання характеру і почуттів.
Навчання математиці має формувати такі риси особистості як працьовитість, акуратність; сприяти розвитку волі, уваги, уяви учнів; стимулювати розвиток інтересу до математики; виробляти вміння вчитися і навички самостійної роботи. Вивчення математики має сприяти реалізації завдань виховання патріотизму, гуманності, чесності.
1.2 Місце табличного і позатабличного множення і ділення в змісті початкового курсу математики
Практична й духовна значущість математики в навчанні, розвитку та вихованні молодших школярів визначає такі основні компоненти початкової математичної освіти: знання про натуральні числа і дії над ними, вміння використовувати ці знання в повсякденному житті; початкові алгебраїчні й геометричні уявлення; математичний розвиток, що включає здібність до узагальнень, здогадку, вміння помітити спільне в різному, відрізняти головне від другорядного, спостерігати, порівнювати, аналізувати, робити висновки та перевіряти їх.
Фундаментом курсу математики початкових класів є вивчення чисел. У зміст цього курсу входять: лічба, нумерація і чотири арифметичні дії над цілими невід’ємними числами; початкові знання властивостей натурального ряду чисел і арифметичних дій; початкові знання про дроби. Вивчення чисел супроводжується постійним використанням різноманітних задач, у ході розв’язування яких учні зустрічаються з деякими видами практичної діяльності, так або інакше пов’язаної з підрахунками і вимірюваннями. УЧНІ ознайомлюються з основними одиницями величин, вчаться переходити від одних до інших.
Ознайомлення з нулем та дробовими числами готує учнів до сприймання ідеї розширення поняття числа.
Вивчення чисел – перший крок в ознайомленні з ідеєю математичної абстракції. Наступним кроком стає перехід від числа до буквеного числення. У початкових класах учні ознайомлюються з виразом, що містить буквений компонент, вчаться знаходити числові значення таких виразів, застосовують буквені вирази для запису властивостей арифметичних дій. Алгебраїчна пропедевтика включає також ознайомлення з поняттям рівняння та нерівності. Учні розглядають рівняння на одну операцію і розв’язують їх на основі правил знаходження невідомого компонента. В завданнях з логічним навантаженням розглядають дещо ускладнені рівняння. Поняття буквеного виразу і рівняння застосовуються під час розв’язування задач.
Зміст початкового курсу математики може бути викладений і засвоєний на різних ступенях глибини і деталізації. Для початкової ланки шкільної освіти достатньо передбачити два ступені. Перший ступінь – це рівень обов’язкової математичної підготовки, що має бути досягнутий всіма учнями; другий – учнями, які проявляють схильність та інтерес до математики (їм створюються умови для досягнення вищих результатів).
Для забезпечення другого рівня матеріал чинних підручників з математики доповнюється системою змістовно-логічних ігор, системою нестандартних задач і завдань розвиваючого характеру, арифметичними й логічними задачами вищого ступеня трудності (в підручниках такі задачі позначені зірочками).
Отже, молодші школярі навчаються за єдиною програмою і однаковими підручниками для всіх учнів даного класу, але підручники побудовані на двох рівнях трудності.
Перейдемо безпосередньо до аналізу програми початкового курсу математики. Такий аналіз передбачає розкриття особливостей змісту і побудови початкового курсу математики; з’ясування зв’язків у вивченні програмового матеріалу (зокрема, арифметичного, алгебраїчного й геометричного), у вивченні теорії і формуванні вмінь і навичок практичної спрямованості курсу. Аналіз програми включає характеристику визначальних методичних спрямувань у вивченні кожної з її основних тем. Розподіл програмового матеріалу повинен подаватися за роками навчання. (У програмі також вказані основні вимоги до знань і умінь учнів на кінець навчання в кожному класі).
Структура програмового матеріалу. Опрацювання понять про натуральне число і арифметичні дії проводиться протягом усього навчання в початкових класах. Ставляться завдання сформувати в учнів уявлення про натуральні числа; домогтися усвідомлення математичних понять і арифметичних дій, знання таблиць кожної дії та прийомів усного й письмового виконання дій; виробити міцні обчислювальні навички. На основі правил порядку виконання дій та властивостей арифметичних дій учні повинні вміти знаходити значення числових виразів, у тому числі виразів з дужками на три-чотири операції.