Смекни!
smekni.com

Формування в учнів обчислювальних навичок з табличного і позатабличного множення і ділення (стр. 2 из 7)

Робота над нумерацією та арифметичними діями будується в початковому курсі концентрично. Програмою намічена система поступового розширення області розглядуваних чисел: перший десяток, другий десяток, сотня, тисяча, багатоцифрові числа (в межах мільйона). У межах першого і другого десятків розглядаються лише дії додавання і віднімання (табличні випадки та випадки, пов’язані з нумерацією чисел), а в межах решти концентрів – усі арифметичні дії. Принцип «концентричності» в основному стосується нумерації і арифметичних дій. Інші питання програми вивчаються за лінійним принципом. Тому точніше буде сказати, що програмовий матеріал вивчається за концентрично-ліній-ним принципом. Навчання починається з невеликих чисел. Числова область поступово розширюється і вводяться нові поняття. Така побудова курсу забезпечує систематичне повторення і поглиблення знань і вмінь, відповідає психологічному розвитку учнів. Особливо вона корисна для формування поняття про систему числення. Поняття розряду, розрядної одиниці, розрядного числа, а також класу і одиниці класу знаходять свій розвиток від концентру до концентру.

Методичне спрямування вивчення основних тем визначається як самою програмою, так і системою вправ і задач, що реалізуються в стабільних підручниках з математики для початкових класів. Розглянемо їх відповідно до підручників, що діють у загальноосвітніх школах України.

Таблиці множення складають на основі відповідних випадків додавання однакових доданків, а таблиці ділення – на основі зв’язку дій множення і ділення, тобто з таблиць множення. Всі таблиці мають бути засвоєні дітьми напам’ять. Для опрацювання таблиць множення кожного з чисел в середньому відводиться 5–7 уроків, стільки ж часу – на одну таблицю ділення. Опрацювання матеріалу проводиться в такій послідовності: ознайомлення з дією множення, складання і заучування таблиці множення числа 2, ознайомлення з дією ділення, зв’язок дій множення і ділення; складання і заучування таблиці ділення на 2; складання і заучування таблиць множення числа 3 і ділення на 3 і т. д.

Отже, як бачимо, вивчення табличного множення та ділення займає чільне місце у методиці навчання математики початкової ланки освіти, а отже потребує вивчення та вдосконалення методичної бази, організаційно-методичних прийомів та апробації різних методик.


2 Методика вивчення табличного і позатабличного множення та ділення

2.1 Засвоєння таблиць множення та ділення

Однією з основних тем програми з математики для II класу є множення і ділення в межах 100. Ця тема включає ряд питань теорії, на основі якої вивчають табличне множення і ділення, позатабличне множення і ділення, ділення з остачею і особливі випадки множення та ділення (з одиницею і нулем).

До табличного множення належать випадки множення одноцифрових натуральних чисел на одноцифрові натуральні числа, результати яких визначають на основі змісту дії множення (знаходять суми однакових доданків), наприклад: 8 • 2, 6 • 3, 5 • 4.

Випадки ділення, які відповідають цим прикладам, також називають табличними, наприклад: 16: 2, 18: 6.

До позатабличних випадків належать множення і ділення в межах 100 двоцифрового числа на одноцифрове, множення одноцифрового на двоцифрове, а також ділення двоцифрового числа на двоцифрове.

До особливих випадків належать множення і ділення з числом нуль, а також множення і ділення на 1.

Внаслідок вивчення множення і ділення в межах 100 учні повинні засвоїти певний обсяг теоретичних знань: поняття про дії множення і ділення, зв’язок між компонентами і результатами дій множення і ділення, деякі властивості дій; знати напам’ять таблицю множення і відповідні випадки ділення, засвоїти ряд обчислювальних прийомів.

Розглянемо методику роботи над кожним з названих розділів.

Табличне множення і ділення. Табличне множення і ділення вивчають у два етапи. На першому етапі формують знання про самі дії множення і ділення, на другому – основну увагу приділяють засвоєнню учнями таблиць множення і відповідних випадків ділення.

На першому етапі насамперед розкривають конкретний зміст множення і ділення.

Множення і ділення з початку їх вивчення доцільно розглядати окремо, оскільки основним при цьому є розкриття не взаємозв’язку між ними, а конкретного змісту цих дій.

Множення розглядають як знаходження суми однакових доданків. Діти повинні засвоїти зв’язок між додаванням і множенням, навчитися розуміти зміст кожного компонента добутку: число, яке беруть доданком, – перший множник; число, яке показує, скільки однакових доданків, – другий множник. Конкретний зміст ділення розкривають за допомогою відповідних операцій з множинами, під час розв’язування задач на ділення на вміщення і на рівні частини.

Розкриваючи конкретний зміст множення, треба насамперед розширити досвід учнів у виконанні відповідних операцій над множинами. Ще в І класі під час вивчення нумерації, додавання і віднімання в межах 10 і 100 доцільно ввести лічбу пар предметів, трійок і т. д. і пропонувати задачі (приклади) на знаходження суми однакових і неоднакових доданків:

1) У трьох коробках лежить по 6 олівців. Скільки всього олівців у коробках?

2) У першій коробці 3 олівці, у другій – 6, у третій – 8. Скільки всього олівців у коробках?

Такі задачі (приклади) корисно ілюструвати предметами або малюнками. Треба практикувати і обернені вправи: за даними малюнками скласти задачі (приклади) на додавання. Розв’язуючи такі задачі і приклади, учні помічають, що є суми з однаковими доданками, і лічать, скільки таких доданків.

У II класі суму однакових доданків замінюють добутком:

6 + 6 + 6 + 6 = 24; 6 • 4 = 24.

Виконуючи цю операцію, діти ознайомлюються з дією множення, знаком і записом множення, засвоюють роль множників.

Покажемо, як це можна зробити.

Учитель пропонує розв’язати задачу: «Дівчинка наклеїла марки на 4 сторінки альбому, по 5 марок на кожну. Скільки всього марок наклеїла дівчинка?» Зробивши ілюстрації, учні записують розв’язок: 5 + 5 + 5 + 5 = 20.

Що можна сказати про доданки цієї суми? (Однакові.) Скільки їх? (4.) Тут по 5 взяли 4 рази. Якщо доданки однакові, то суму можна записати інакше:

5 • 4 = 20.

Читають цей запис так: по 5 узяти 4 рази, буде 20. (Діти повторюють.) Можна прочитати інакше: 5 помножити на 4, буде 20. (Повторюють.) Тут виконали дію множення. Додавання однакових доданків називають множенням. (Повторюють.) Множення позначають знаком – крапкою. Що показує в цьому записі число 5? (Число 5 береться як доданок.) Що показує число 4? (Скільки разів узяли доданком число 5.)

Потім розв’язують кілька вправ на заміну суми добутком. При цьому діти встановлюють, що показує кожне число в новому записі. Потім пропонують обернені вправи: на заміну добутку сумою. Наприклад, пропонують знайти результат: 3 • 4.

Прочитайте приклад. (З помножити на 4.) Що в ньому записі показує число 3? (Це число береться як доданок.) Що означає число 4? (Стільки береться доданків.) Замінимо приклад на множення прикладом на додавання. Запис: 3 + 3 + 3 + 3 = 12.

Щоб засвоїти зв’язок множення з додаванням, корисно розглянути такі вправи: читання прикладів на множення, записування аналогічних прикладів під диктовку спочатку вчителя, а потім учня, складання учнями прикладів на додавання і множення, розв’язування простих задач на знаходження добутку додаванням і множенням.

Дуже важливо, щоб учні зрозуміли, за яких умов можна замінювати суму добутком і коли це неможливо. Цьому допомагає розв’язування прикладів з однаковими і різними доданками.

На дошці приклад: 7 + 7 + 7.

Замініть приклад на додавання прикладом на множення (7 • 3.) Чи можна приклад 2 + 3 + 7 замінити прикладом на множення? (Не можна.) Чому? (Доданки різні. Доданки неоднакові.) Чи завжди можна приклад на додавання замінити прикладом на множення? (Не завжди.) Коли це можна зробити? (Коли доданки однакові.)

Можна запропонувати: скласти з однаковими числами приклади на додавання і множення, користуючись рисунками (рис. 1).

Рис. 1

З’ясувати, чим схожі і чим відрізняються ці приклади.

Доцільно за даними прикладами (4 + 3 і 4 • 3) зробити малюнки, знайти результати і порівняти приклади.

Корисні вправи з рівностями і нерівностями, наприклад: Порівняйте вирази і поставте знак «>», «<», «=»:

18 • 2 * 18 • 3

4 + 4 + 4 * 4 • 2

3 • 4 * 2 • 4

4 • 7 + 4 * 4 • 9

Наведемо пояснення учня під час виконання останнього завдання: зліва додали сім четвірок та ще додали одну – всього стало 8 четвірок, а справа їх 9. Зліва четвірок менше, ніж справа, отже, вираз зліва менший; поставимо знак «<».

Під час виконання вправ треба звертати увагу учнів на прийнятий у нашій країні порядок розміщення множників у записі множення: на першому місці пишуть число, яке береться доданком, а на другому – число, яке показує, скільки береться однакових доданків.

Зауважимо, що для вправ можна використовувати приклади не лише з одноцифровими множниками (4 • 3), а й з двоцифровими (12 • 3). Це роблять для того, щоб учні на цьому ступені практично користувалися відомим їм взаємозв’язком між множенням і додаванням, вправлялися у виконанні різних випадків додавання.

На цьому етапі учні не повинні запам’ятовувати напам’ять результати множення.

Конкретний зміст ділення розкривають у процесі розв’язування задач спочатку на ділення на вміщення, а потім на рівні частини.

У зв’язку з цим учні повинні вміти виконувати за умовою задачі операцію розбиття множини на ряд рівночисельних множин; розуміти, що з цією операцією пов’язана дія ділення; навчитися записувати розв’язування задач за допомогою цієї дії.

Учні II класу ознайомлюються з назвами компонентів і результатів дій множення і ділення: перший множник, другий множник, добуток, пізніше – ділене, дільник, частка. Тут же діти дізнаються, що терміни «добуток» і «частка» означають не лише результат дії, а й відповідний вираз, наприклад: 4 • 3 і 20: 5.