Смекни!
smekni.com

Формирование познавательной потребности у учащихся средствами информационных технологий (стр. 8 из 17)

Задачи:

Обучающая: создать условия для формирования представления о площади криволинейной трапеции и интеграле.

Развивающая: развивать познавательную потребность учащихся.

Воспитательная: воспитывать умение организовать свою деятельность, формирование ценностной ориентации, мировоззрения.

Оборудование: компьютер, мультимедиа проектор, экран.

Содержание урока: данный урок носит ознакомительный характер, ученики знакомятся с понятиями "площадь криволинейной трапеции", "первообразная", "интеграл", получают понятие об интеграле как площади криволинейной трапеции. Тема рассчитана на 2 часа.

План урока:

1. Организация начала урока.

2. Постановка проблемы урока.

3. Актуализация ЗУН, необходимых для творческого применения знаний.

4. Формирование новых понятий и способов действий

5. Обобщение и систематизация знаний и способов деятельности

6. Усвоение образца комплексного применения ЗУН

7. Применение знаний умений и навыков в новых условиях

8. Подведение итогов урока

Ход урока:

1. Организация начала урока. Проверка присутствующих,

2. Постановка проблемы урока. Постановка целей и задач урока.

3. Актуализация ЗУН, необходимых для творческого применения знаний.

Проиллюстрируем фрагмент урока. Чтобы заитересовать учащихся даются исторические сведения об интеграле (Слайд 2).



Формирование новых понятий и способов действий.

Определение криволинейной трапеции. Площадь криволинейной трапеции. Если на [а;b] ([а;b] ?Ох) функция у=f(х) – непрерывная, не меняет знак (график не пересекает ось абсцисс), тогда фигура, ограниченная графиком функции f, отрезком [а;b] и прямыми х = а, х = b, называется криволинейной трапецией (слайд 8).

Если f - непрерывная и неотрицательная на отрезке [а;b] функция, а F – её первообразная на этом отрезке, то площадь S соответствующей криволинейной трапеции равна приращению первообразной на отрезке [а;b], т.е.

Введение понятия "интеграл".

Рассмотрим другой подход к задаче вычисления площади криволинейной трапеции. Для простоты будем считать функцию f неотрицательной и непрерывной на отрезке [а; b] тогда площадь S соответствующей криволинейной трапеции можно приближенно подсчитать следующим образом.


Разобьем отрезок [а; b] на n отрезков одинаковой длины точками x0 = а<x1 < x2 < … <xn-1 < xn = b и пусть

,

где k = 1, 2, ..., n — 1, n. На каждом из отрезков [xk-1; xk] как на основании построим прямоугольник высотой F(xk-1). Площадь этого прямоугольника равна:

а сумма площадей всех таких прямоугольников равна:

В силу непрерывности функции f объединение построенных прямоугольников при большом n, т. е. при малом Δx, "почти совпадает" с интересующей нас криволинейной трапецией. Поэтому возникает предположение, что Sn≈S при больших n. (Коротко говорят: "Sn стремится к S при n, стремящемся к бесконечности"— и пишут: Sn→S при n→∞.) Предположение это правильно. Более того, для любой непрерывной на отрезке [а; b] функции а (не обязательно неотрицательной) Sn при n→∞ стремится к некоторому числу. Это число называют (по определению) интегралом функции f от а до b и обозначают

, т. е.

при n→∞

(читается: "Интеграл от а до b эф от икс дэ икс"). Числа а и b называются пределами интегрирования: а — нижним пределом, b — верхним. Знак

называют знаком интеграла. Функция f называется подынтегральной функцией, а переменная х — переменной интегрирования. Итак, если f(х)≥0 на отрезке [а; b] то площадь S соответствующей криволинейной трапеции выражается формулой

Полный конспект урока см. приложение 1.

В теме "Применение интегралов" мы изучили площадей криволинейных трапеций с помощью интегралов. В процессе проведения опытно-экспериментальной работы нами был разработан план урока для 11 класса на тему: "Вычисление интегралов и площадей криволинейных трапеций с помощью интегралов. Вычисление определенного интеграла с помощью MSExcel" с применением интерактивных досок и информационных технологий (урок 7). Приведем фрагмент урока по теме 7 (см. приложение 1).

Тема урока: Вычисление интегралов и площадей криволинейных трапеций с помощью интегралов. Вычисление определенного интеграла с помощью программ MSExcel.

Цель: Обеспечить закрепление понятия интеграл, способы его вычисления, применение интеграла для вычисления площадей.

Задачи:

Обучающая: сформировать навыки планирования ответа, умение считать и писать в быстром темпе, навыки самоконтроля

Развивающая: развивать познавательную потребность учащихся.

Воспитательная: воспитывать умение организовать свою деятельность, формирование ценностной ориентации, мировоззрения.

Содержание урока: Данная тема рассчитана на два часа и состоит из двух частей: часть 1 – "Вычисление интегралов и площадей криволинейных трапеций с помощью интегралов. В процессе изучения данной темы учащиеся узнают о физическом приложении интеграла.

План урока:

1. Организация начала урока.

2. Постановка проблемы урока.

3. Актуализация ЗУН, необходимых для творческого применения знаний

4. Контроль и самоконтроль знаний, умений и навыков по теме интеграл

5. Формирование новых понятий и способов действий

6. Обобщение и систематизация знаний и способов деятельности

7. Усвоение образца комплексного применения ЗУН

8. Применение знаний умений и навыков в новых условиях

9. Подведение итогов урока

Задание 2. Вычисление определенного интеграла с помощью таблицы Excel.

Для численного вычисления определенного интеграла методом трапеций используется формула:


Методику вычисления определенного интеграла в Excel с использованием приведенной формулы рассмотрим на примере.

Пусть требуется вычислить определенный интеграл

Величина интеграла, вычисленная аналитически равна 9. Для численного вычисления величины интеграла с использованием приведенной формулы выполните следующие действия:

- табулируйте подинтегральную функцию в диапазоне изменения значений аргумента 0 – 3 (см. рис.).

- в ячейку С3 введите формулу =(A3-A2)*B2+(A3-A2)*(B3-B2)/2+C2, которая реализует подинтегральную функцию.

- Скопируйте буксировкой формулу, записанную в ячейке С3 до значения аргумента х = 3. Вычисленное значение в ячейке С17 и будет величиной заданного интеграла - 9.

Вычислите интегралы, работая парами.

Это можно проиллюстрировать использованием компьютера при изучении темы "Применение определенного интеграла к вычислению площадей" на уроках математики. Подходящим программным средством в качестве компьютерной поддержки темы может использоваться электронные таблицы EXCEL. Разработка в ней задачи интегрирования позволяет, во-первых, освоить многие операции, изучаемые в программном средстве по предмету информационных технологий, и, во-вторых, закрепить материал по интегрированию в приложении к вычислению площадей. Тем самым значительно сокращаются затраты учебного времени по общим предметам. Программная разработка в EXCEL состоит из набора изучаемых функций; степенных, показательных, тригонометрических, для которых предлагается ввести соответствующие числовые коэффициенты и пределы интегрирования. В соседний столбец для каждой функции выведены формулы для вычисления первообразных с указанными коэффициентами и пределами интегрирования. После выбора функций значения интегралов и соответствующих им площадей рассматриваются автоматически. На графики выводятся подынтегральная функция и первообразная. Таким образом, имеется возможность графически и численно проанализировать характер функций и влияние на значение площади, то есть выполнить компьютерное моделирование. Поскольку первообразные находятся учащимися "ручным" способом и в электронную таблицу вводятся предварительно выведенные формулы, то работа с компьютером не сводится к механическим операциям и предполагает углубленное знакомство со свойствами функций и приобретения навыков их интегрирования. При этом представляется возможным дифференцировать темпы работы, обеспечить ее вариативность.

Так, например, нами применялись устные коллективные разминки, занимающие не более 5 минут, развивающие быстроту реакции, внимательность, умение четко и конкретно мыслить. В такие разминки следует включать вопросы, требующие однозначного, быстрого хорового ответа и направленные на актуализацию опорных знаний, и на проверку домашнего задания, и на отработку каких либо математических понятий и определений.