Суммируя полученные для каждого отрезка значения силы гравитационного притяжения, мы получим представление искомой силы в виде суммы тем более точное, чем мельче отрезки, на которые мы разбивали отрезок [c; c+l]. В пределе получим
6. Подведение итогов урока. Вывод о проблеме урока. Задание домашнего задания.
Урок-КВН по теме "Интеграл"
Цель: обобщение изученного материала по теме, формирование умений применять математические задания к решению практических задач.
Задачи:
Развивающие: развитие познавательной потребности, творческих способностей.
Воспитательные: воспитание интереса к предмету, воспитание чувства коллективизма и взаимовыручки.
КВН проводится интерактивно с помощью сайта школы.
На экране ЭВМ написано:
I команда | II команда |
(Ниже ведётся запись полученных очков).
Правила игры.
Класс разбивается на две команды.
Выбираются капитаны команд.
Капитаны назначают консультантов.
Для участия во всех видах работы ученики вызываются к доске капитанами команд.
Ход урока.
1 этап. Разминка – ведется на бумажном носителе.
На экране ЭВМ написаны задания.
Докажите, что функция F(х) является первообразной для функции f(х) на промежутке
F(х) =
+ 3х – 5,f(х) = 3(
+ 1)Найдите общий вид первообразной для функции:
f(х) = 2х3 – 6
+ х – 1Вычислите интеграл:
а)
;б)
.Найдите первообразную функцию f(х) = 4 –
, график которой проходит через точку (–3; 10).Решение:
F'(х) = (х3 +3х – 5)' = 3
+ 3 = 3( +1)F'(х) = f(х).
F(х) является первообразной f(х)
2.
3. а)
б)
4.
Консультанты каждой команды собирают тетради и передают консультантам другой команды для проверки. Побеждает та команда, у которой больше сумма очков.
II этап. Блиц – турнир – проводится с помощью ЭВМ (желательно применение проектора). Найдите ошибку: (с классом)
1.
2.
3.
4.
5.
6.
7.
8. Тело движется по прямой так, что расстояние S до него от некоторой точки А этой прямой изменяется по закону
S = 0,5
+ 3t + 2(м),где t – время движения в секундах.
Найти U тела через 7 сек.
U (7) = 10 м/сек.
III этап. Домашнее задание.
К доске приглашаются по 1 ученику от каждой команды.
1. С помощью интеграла вывести формулу объёма конуса.
2. С помощью интеграла вывести формулу объёма шара.
Решение:
Рисунок 1
Дано: АВ = R
ОВ = H.
Вывести формулу V конуса.
Вывод: При вращении прямоугольного треугольника ОАВ вокруг оси ОХ, содержащей катет
ОВ получается конус. Треугольник ОАВ является частным случаем криволинейной трапеции, ограниченной графиком функции y=f(х) (прямой ОА), прямыми х = 0 и х = Н, осью абсцисс. V тела вращения вычисляется по формуле
Найдём уравнения прямой ОВ:
Вывод: V конуса равен
произведения площади основания на высоту.Решение 2:
Рисунок 2
Дано: полукруг (О;R)
Вывести формулу V шара.
Вывод: При вращении полукруга вокруг оси ОХ, получаем тело вращения шар.
Полукруг является частным видом криволинейной трапеции, ограниченной графиком функции у=f(х) и прямыми х = – R, х = R, у = 0.
Уравнение окружности имеет вид
+ = = –Подставим в формулу:
Вывод: V шара радиуса R равен 4/3
.IV этап. Конкурс капитанов.
1. Вычислите площадь фигуры, ограниченной графиками функций
2. Вычислите площадь фигуры, ограниченной линиями
В процессе решения задач капитанами, учащиеся решают задачи капитанов из противоположных команд и готовят для него вопросы по теме заданий. По результатам решения задачи и ответов на вопросы, капитаны получают соответствующие баллы.
Решение задания 1.
1. Найдём абсциссы точек пересечения графиков данных функций:
2. Постройте графики данных функций с применением ИКТ.
х | 3 | 4 | 7 | 12 | 19 | 28 |
у | 0 | 3 | 6 | 9 | 12 | 15 |
х | 0 | 2 |
у | 1 | 2 |
V этап. Конкурс болельщиков – задания проектируются на доску с помощью проектора, а также дублируются на сайте школы.
1). Чему равен путь, пройденный точкой, движущейся прямолинейно, за отрезок времени от t1=1с до t2 = 4с, если скорость точки U(t) = (2t? – 3t) м/с?
Чему равно ускорение этой точки в момент времени t = 2с?
2). Тело движется прямолинейно со скоростью U(t) = (3
– 2t)Найти путь, пройденный телом за первые 5 сек.
Чему равно ускорение тела в момент t = 5 c?
Решение 1.
Решение 2.
VI этап. Конкурс эрудитов - задания проектируются на доску с помощью проектора, а также дублируются на сайте школы
1. Вычислите:
2. Вычислите:
Решение 1.
Пусть
Решение 2.
Пусть
VII этап. Конкурс консультантов. (дополнительный) – проводится при помощи Mathcad.