10. Мордкович, А. Г. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. общеобразоват. учреждений. Ч. I. – М.: Мнемозина, 2003. – 375 с.
11. Никольский, С. М. Алгебра и начала анализа [Текст]: Учеб. для 11 класса общеобразоват. учреждений/ С. М. Никольский, М. К. Потапов. - М.: Просвещение, 2003.
Приложение
Опытное преподавание
Конспект факультативного занятия
Тема: Свойства интеграла.
Класс: 11 класс.
Триединая цель:
I. Образовательный аспект:
1) изучить свойства интеграла, продемонстрировать учащимся применение физических моделей при изучении свойств интеграла (межпредметную связь математики и физики);
2) научить применять свойства при вычисления интеграла, при решении задач математики и физики.
II. Развивающий аспект:
3) создать условия для развития практического, абстрактного и логического мышления учащихся.
III. Воспитательный аспект:
4) создать условия для осмысления ценности математических и физических знаний как средства познания мира.
Ожидаемый результат факультатива:
Репродуктивный уровень: знание свойств интегралов, умение применять их для вычисления интеграла.
Конструктивный уровень: умение применять свойства интеграла для решения простейших математических и физических задач.
Творческий уровень: умение применять свойства интеграла для решения нетривиальных текстовых задач с математическим и физическим содержанием.
Методы обучения, применяемые на факультативе:
· Объяснительно-иллюстративный
· Частично-поисковый
Формы организации познавательной деятельности учащихся:
· Фронтальная
· Индивидуальная
Формы контроля:
Контроль со стороны учителя
План:
I. Организация деятельности (1-2 мин.).
II. Актуализация знаний (2-3 мин.).
III. Изучение нового материала (25 мин.).
IV. Решение задач (10-12 мин.).
Литература: [2], [8].
Содержание.
Мотивация:Рассмотрим задачу.Скорость тела задается формулой v(t)=t3-2t2-1 м/с. Найти путь, пройденный телом за первые 10 с после начала движения.
Решение. Путь пройденный телом за первые 10 с после начала движения вычисляется по формуле
Как же вычислить интеграл от такой функции?
Для этого рассмотрим вспомогательную задачу.
Пусть к материальной точке, движущейся по оси х, приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону. Под действием этих сил материальная точка переместилась из точки а в точку b, при этом работа каждой силы на этом отрезке вычисляется по формулам:
и . Тогда общая работа, совершенная обеими силами равна . (1)С другой стороны, если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону, то их равнодействующая F(x) находится по формуле F(x)= F1(x)+F2(x). Работа этой силы равна
. (2)В силу равенства левых частей в формулах (1) и (2), получаем равенство правых, т. е.
.Нетрудно показать, что данное свойство выполняется для любого конечного числа сил, действующих на точку и направленных по одной прямой в одну сторону. Это свойство показывает, что интеграл суммы нескольких слагаемых разбивается на сумму интегралов отдельных слагаемых.
Попробуйте самостоятельно доказать, что если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой, но в противоположную сторону, то тогда верно следующее равенство
.Тогда, возвращаясь к исходной задаче, можно сделать следующую запись
.Как видно из формулы под знаком интеграла остались постоянные множители.
Теперь проверим можно ли за знак интеграла вынести постоянный множитель.
Вспомним рассмотрение задачи о давлении жидкости на прямоугольную стенку бассейна с основанием а, в результате решения которой была получена формула
, (3)где а – величина постоянная, равная ширине стенки бассейна.
Разделим прямоугольную стенку бассейна на а прямоугольников с основанием, равным единице. Тогда весь бассейн также разделится на а равных частей, при чем давление на прямоугольную стенку с основанием, равным единице в каждой части будет вычисляться по формуле
. Учитывая, что во всех частях давление одно и то же и всего частей а, то общее давление равно . (4)В силу равенства левых частей в формулах (3) и (4), получаем равенство правых, т. е.
.Данное равенство можно обобщить на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b], т. е.
.Данное свойство показывает, что постоянный множитель можно выносить за знак интеграла.
Тогда применяя это свойство к решению исходной задачи, получаем
.Выведенные формулы называются свойствами линейности интеграла.
Но интеграл обладает и другими свойствами, которые необходимо знать для решения задач. Одно из таких свойств выглядит следующим образом
.Рассмотрим доказательство данного свойства на задаче о перемещении точки [с.18].
При введении интеграла рассматривается случай, когда нижний предел интегрирования меньше верхнего. Но определенный интеграл можно обобщить и на случай, когда верхний предел меньше нижнего. В этом случае обратимся к определению интеграла как суммы. Разбивая отрезок от [a; b] промежуточными значениями t1, t2, …,tn-1, убедимся, что все Δt теперь отрицательны. Легко убедиться, что
, (5)так как при любом разбиении отрезка [a; b] соответствующие суммы будут отличаться знаками всех Δt во всех слагаемых.
Следующее свойство называется свойством аддитивности интеграла
.Докажем свойство на примере задачи о перемещении точки [с.18].
Существенное свойство интеграла состоит в том, что область интегрирования можно разбить на части: путь, пройденный за время от а (начала) до b (конца), можно представить
как сумму пути, пройденного за время от a до c (промежуточного момента) и от c до b
. (6)При помощи соотношения (5) можно распространить формулу (6) и на случай, когда с не лежит внутри промежутка [a; b].
Пусть c>b>a. Тогда очевидно
.Перенесем последнее слагаемое в левую часть и воспользуемся (5)
. (7)Таким образом, получили равенство (7), в точности совпадающее с (6).
Аналогично можно рассмотреть случаи другого расположения чисел a, c, b (их всего шесть вариантов), которые нужно самостоятельно разобрать и убедиться, что формула (6) оказывается верной во всех этих случаях, т. е. независимо от взаимного расположения чисел a, c, b.
Ещё одно свойство интеграла звучит так:
если
на отрезке [a; b], то .Вспомним формулу для вычисления массы стержня по известной плотности.
.Как известно, плотность вещества – это физическая величина, показывающая, чему равна масса вещества в единице объема, следовательно, это величина неотрицательная. С другой стороны масса вещества есть также величина неотрицательная. Таким образом, получаем: если подынтегральная функция неотрицательна на рассматриваемом отрезке, то
.