Смекни!
smekni.com

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах (стр. 8 из 9)

10. Мордкович, А. Г. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. общеобразоват. учреждений. Ч. I. – М.: Мнемозина, 2003. – 375 с.

11. Никольский, С. М. Алгебра и начала анализа [Текст]: Учеб. для 11 класса общеобразоват. учреждений/ С. М. Никольский, М. К. Потапов. - М.: Просвещение, 2003.

Приложение

Опытное преподавание

Конспект факультативного занятия

Тема: Свойства интеграла.

Класс: 11 класс.

Триединая цель:

I. Образовательный аспект:

1) изучить свойства интеграла, продемонстрировать учащимся применение физических моделей при изучении свойств интеграла (межпредметную связь математики и физики);

2) научить применять свойства при вычисления интеграла, при решении задач математики и физики.

II. Развивающий аспект:

3) создать условия для развития практического, абстрактного и логического мышления учащихся.

III. Воспитательный аспект:

4) создать условия для осмысления ценности математических и физических знаний как средства познания мира.

Ожидаемый результат факультатива:

Репродуктивный уровень: знание свойств интегралов, умение применять их для вычисления интеграла.

Конструктивный уровень: умение применять свойства интеграла для решения простейших математических и физических задач.

Творческий уровень: умение применять свойства интеграла для решения нетривиальных текстовых задач с математическим и физическим содержанием.

Методы обучения, применяемые на факультативе:

· Объяснительно-иллюстративный

· Частично-поисковый

Формы организации познавательной деятельности учащихся:

· Фронтальная

· Индивидуальная

Формы контроля:

Контроль со стороны учителя

План:

I. Организация деятельности (1-2 мин.).

II. Актуализация знаний (2-3 мин.).

III. Изучение нового материала (25 мин.).

IV. Решение задач (10-12 мин.).

Литература: [2], [8].

Содержание.

Мотивация:Рассмотрим задачу.Скорость тела задается формулой v(t)=t3-2t2-1 м/с. Найти путь, пройденный телом за первые 10 с после начала движения.

Решение. Путь пройденный телом за первые 10 с после начала движения вычисляется по формуле

Как же вычислить интеграл от такой функции?

Для этого рассмотрим вспомогательную задачу.

Пусть к материальной точке, движущейся по оси х, приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону. Под действием этих сил материальная точка переместилась из точки а в точку b, при этом работа каждой силы на этом отрезке вычисляется по формулам:

и
. Тогда общая работа, совершенная обеими силами равна

. (1)

С другой стороны, если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону, то их равнодействующая F(x) находится по формуле F(x)= F1(x)+F2(x). Работа этой силы равна

. (2)

В силу равенства левых частей в формулах (1) и (2), получаем равенство правых, т. е.

.

Нетрудно показать, что данное свойство выполняется для любого конечного числа сил, действующих на точку и направленных по одной прямой в одну сторону. Это свойство показывает, что интеграл суммы нескольких слагаемых разбивается на сумму интегралов отдельных слагаемых.

Попробуйте самостоятельно доказать, что если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой, но в противоположную сторону, то тогда верно следующее равенство

.

Тогда, возвращаясь к исходной задаче, можно сделать следующую запись

.

Как видно из формулы под знаком интеграла остались постоянные множители.

Теперь проверим можно ли за знак интеграла вынести постоянный множитель.

Вспомним рассмотрение задачи о давлении жидкости на прямоугольную стенку бассейна с основанием а, в результате решения которой была получена формула

, (3)

где а – величина постоянная, равная ширине стенки бассейна.

Разделим прямоугольную стенку бассейна на а прямоугольников с основанием, равным единице. Тогда весь бассейн также разделится на а равных частей, при чем давление на прямоугольную стенку с основанием, равным единице в каждой части будет вычисляться по формуле

. Учитывая, что во всех частях давление одно и то же и всего частей а, то общее давление равно

. (4)

В силу равенства левых частей в формулах (3) и (4), получаем равенство правых, т. е.

.

Данное равенство можно обобщить на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b], т. е.

.

Данное свойство показывает, что постоянный множитель можно выносить за знак интеграла.

Тогда применяя это свойство к решению исходной задачи, получаем

.

Выведенные формулы называются свойствами линейности интеграла.

Но интеграл обладает и другими свойствами, которые необходимо знать для решения задач. Одно из таких свойств выглядит следующим образом

.

Рассмотрим доказательство данного свойства на задаче о перемещении точки [с.18].

При введении интеграла рассматривается случай, когда нижний предел интегрирования меньше верхнего. Но определенный интеграл можно обобщить и на случай, когда верхний предел меньше нижнего. В этом случае обратимся к определению интеграла как суммы. Разбивая отрезок от [a; b] промежуточными значениями t1, t2, …,tn-1, убедимся, что все Δt теперь отрицательны. Легко убедиться, что

, (5)

так как при любом разбиении отрезка [a; b] соответствующие суммы будут отличаться знаками всех Δt во всех слагаемых.

Следующее свойство называется свойством аддитивности интеграла

.

Докажем свойство на примере задачи о перемещении точки [с.18].

Существенное свойство интеграла состоит в том, что область интегрирования можно разбить на части: путь, пройденный за время от а (начала) до b (конца), можно представить


как сумму пути, пройденного за время от a до c (промежуточного момента) и от c до b

. (6)

При помощи соотношения (5) можно распространить формулу (6) и на случай, когда с не лежит внутри промежутка [a; b].

Пусть c>b>a. Тогда очевидно

.

Перенесем последнее слагаемое в левую часть и воспользуемся (5)

. (7)

Таким образом, получили равенство (7), в точности совпадающее с (6).

Аналогично можно рассмотреть случаи другого расположения чисел a, c, b (их всего шесть вариантов), которые нужно самостоятельно разобрать и убедиться, что формула (6) оказывается верной во всех этих случаях, т. е. независимо от взаимного расположения чисел a, c, b.

Ещё одно свойство интеграла звучит так:

если

на отрезке [a; b], то
.

Вспомним формулу для вычисления массы стержня по известной плотности.

.

Как известно, плотность вещества – это физическая величина, показывающая, чему равна масса вещества в единице объема, следовательно, это величина неотрицательная. С другой стороны масса вещества есть также величина неотрицательная. Таким образом, получаем: если подынтегральная функция неотрицательна на рассматриваемом отрезке, то

.