Смекни!
smekni.com

Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах (стр. 7 из 9)

Решение. Кинетическая энергия тела, вращающегося вокруг непод­вижной оси, равна

, где ω – угловая скорость, а J – момент инерции относительно оси вращения.

Момент инерции стержня относительно оси равен Sγl2dl, отсюда кинетическую энергию стержня можно найти по формуле:

(Дж).

№5. Треугольная пластинка, основание которой а = 40 см, а высота h = 30 см, вращается вокруг своего основания с по­стоянной угловой скоростью ω=5π рад/с. Найти кинетическую энергию пластинки, если толщина ее d= 0,2 см, а плотность материала, из которого она изготовлена, γ= 2,2 • 103 кг/м3. [3]

Нахождение давления.

№6. Найти давление воды на плотину, если вода доходит до её верхнего края и если известно, что плотина имеет вид трапеции с высотой h, верхним основанием а и нижним основанием b.

Решение. Рассмотрим элементарный слой, находящийся на глубине х и имеющей высоту dx.

Легко доказать, что длина этого слоя равна

Поэтому его площадь dS равна

,

а давление dP на него равно

.

Всё давление на плотину выражается интегралом

.[4]

№7. . Вычислить силу давления воды на вертикальную плотину, имеющую форму трапеции, верхнее основание которой равно 70 м, нижнее 50 м, а высота 20 м. [4]

Нахождение работы.

№8. Найдите работу переменного тока, изменяющегося по формуле

за промежуток времени
, если сопротивление цепи равно R. [4]

Решение. Как известно из физики, в случае постоянного тока мощность выражается формулой

. Поэтому, учитывая, что
имеем:

.

№9. Два точечных электрических заряда +10-4 и -10-4 Кл находятся на расстоянии 10 см друг от друга. Найдите работу, необходимую для того, чтобы развести их на расстояние 10 км. [2]

Решение. Сила взаимодействия F между зарядами равна

(a=kq1q2, где
Нм2/Кл2). Тогда работа этой силы, когда заряд q1 неподвижен, а заряд q2 передвигается по отрезку [0,1; 10000] м, равна

.

№10. Какую работу требуется выполнить, чтобы с помощью ракеты тело массы m поднять с поверхности Земли, радиус которой R, на высоту h? [4]

Решение. На тело массы mпо закону всемирного тяготения действует сила

, где M– масса Земли, а r– расстояние тела от центра Земли. Поэтому

.

На поверхности же Земли, т. е. при r=Rимеем F=mg, т. е.

и
. Отсюда
.

№11. . Найти работу, выполняемую при переносе материальной точки, имеющей массу m, из A(a) в B(b), если притягивающая её по закону Ньютона точка имеет массу μ и находится в начале координат. [4]

Решение. По закону Ньютона сила тяготения равна

, где γ – гравитационная постоянная, а r – расстояние между точками. Тогда получаем

.

№12. Из цистерны, имеющей форму прямого кругового конуса радиусом основания R и высотой H, выкачивают воду через вершину конуса. Найдите совершаемую при этом работу. Найдите числовое значение работы при R=3 м, H=5 м, считая плотность воды ρ=1 г/см3.

Заключение

В заключение подведем некоторые итоги проделанной работы.

Были проанализированы различные учебники по теме, рассмотрены различные подходы к изложению исследуемого материала, вследствие чего выделены достоинства и недостатки каждого подхода, на основании этого и в силу необходимости полноценного изучения важнейших элементов интегрального исчисления в основной школе, а также в силу недостаточной разработанности методики преподавания этого материала с помощью использования физических моделей в школьном курсе математики, была разработана своя методика, также имеющая как свои недостатки, так и достоинства.

Среди недостатков выделим отсутствие универсальности у данной методики. Данное изложение материала на уроках возможно на сегодняшний день только в классах с углубленным изучением математики или физики, либо на факультативных занятиях.

Достоинствами данной методики являются

1) прикладная значимость материала (что в некоторых случаях облегчит работу и учителю физики);

2) эффективность обучения (за счет приведения практических примеров);

3) удовлетворение познавательных интересов учащихся.

Необходимо отметить, что основные цели и задачи, поставленные нами, были достигнуты. Тема «Интеграл», изучаемая с помощью разработанной методики, наиболее выпукло и ярко демонстрирует связь математики с физикой, позволяет полноценно и осознанно усвоить материал по теме.

В данной работе представлены как теоретический материал, так и практические упражнения. Физические модели и явления, рассматриваемые во второй главе, не выходят за рамки школьной программы по физике, а, следовательно, не требуют от учащихся дополнительных знаний по предмету, что удовлетворяет принципу доступности изложения материала, который в свою очередь сочетается с принципом достаточно высокого уровня трудности. Также в данной работе реализованы принципы наглядности (чертежи, графики к задачам), систематичности и последовательности в обучении.

Использование данной методики формирует такие специальные качества, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их, а, следовательно, способствует развитию мышления, памяти, внимания и речи учащихся.

У учителя при использовании данной методики есть возможность выбора пути изложения материала в соответствии с особенностями мышления и восприятия учащихся, а также в соответствии с их подготовкой по математике и физике. Например, учитель классов курса А может взять лишь некоторые факты данной методики, учитель же классов с углубленным изучением математики и физики может использовать всю методику целиком. В любом случае, данная работа может помочь каждому учителю в преподавании темы «Интеграл».

На мой взгляд, применение физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники интегрирования и изучении приложений способствует осознанному качественному усвоению школьниками этого материала, развитию правильного представления об изучаемом понятии, его огромной значимости в физике, формированию мировоззрения учащихся.

Библиография

1. Алимов, Ш. А. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк./ Ш. А. Алимов, Ю. М. Колягин, Ю.В. Сидоров и др. - М.: Просвещение, 1993. – 254 c.

2. Башмаков, М. И. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1992. – 351 с.

3. Берман, Г. Н. Сборник задач по курсу математического анализа [Текст]: Уч. пособие. - СПб.: Изд-во «Профессия», 2001. – 432 с.

4. Виленкин, Н. Я., Куницкая, Е. С., Мордкович, А. Г. Математический анализ. Интегральное исчисление [Текст]: Уч. пособие для студентов-заочников II курса физико-математических факультетов педагогических институтов. - М.: Просвещение, 1979. – 175 с.

5. Задачи как средство обучения алгебре и началам анализа в X классе [Текст]: Уч. пособие// Сост. Е. С. Канин. – Киров: Редакционно-издательский совет Кировского ГПИ имени В. И. Ленина, 1985. – 92 c.

6. Задачник по курсу математического анализа [Текст]: Уч. пособие для студентов заочн. отделений физ.-мат. фак-тов пединститутов. Ч. I// Под ред. Н. Я. Виленкина. – М.: Просвещение, 1971. – 343 с.

7. Зельдович, Я. Б. Высшая математика для начинающих и её приложения к физике [Текст]: Уч. пособие для физико-математических средних школ и проведения факультативных занятий. – М.: Наука, 1970. – 560 с.

8. Колмогоров, А. Н. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. общеобразоват. учреждений/ А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др. – М.: Просвещение, 1998. – 365 c.

9. Модели и моделирование в методике обучения физике [Текст]: Материалы докладов республиканской научно-теоретической конференции. – Киров: Изд-во Вятского ГПУ, 2000. – 90 с.